Open Access
Issue
E3S Web Conf.
Volume 85, 2019
EENVIRO 2018 – Sustainable Solutions for Energy and Environment
Article Number 01008
Number of page(s) 6
Section Heat and Mass Transfer in Buildings
DOI https://doi.org/10.1051/e3sconf/20198501008
Published online 22 February 2019
  1. El Habib El Andaloussi, Rafik Missaoui, Adel Mourtada, Stéphane Pouffary et Ariane Rozo, Energie, changement climatique et bâtiment en Méditerranée : perspectives régionales ; plan bleu, Sophia Antipolis (2011) [Google Scholar]
  2. Enerdata, Alcor. Tendances de l’efficacité énergétique dans les pays du bassin méditerranéen, Rapport régional élaboré par le réseau MEDENER (2013) [Google Scholar]
  3. R. Boukhanouf, H. G. Ibrahim, A. Alharbi, and M. Kanzari, "Investigation of an Evaporative Cooler for Buildings in Hot and Dry Climates", Journal of Clean Energy Technologies, Vol. 2, No. 3, pp. 221-225, (2014) [CrossRef] [Google Scholar]
  4. R. Boukhanouf, A. Alharbi, O. Amer, and H. G. Ibrahim, "Experimental and Numerical Study of a Heat Pipe Based Indirect Porous Ceramic Evaporative Cooler", International Journal of Environmental Science and Development, Vol. 6, No. 2, pp.104-110 (2015) [CrossRef] [Google Scholar]
  5. N. Lechner, Heating, Cooling, Lighting: Sustainable Design Methods for Architects, 3rd ed. New Jersey, U.S.A. : Wiley (2009) [Google Scholar]
  6. J.R. Camargo, C.D. Ebinumca, J.L. Silveira "Thermoeconomic analysis of an evaporative desiccant air conditioning system", Applied Thermal Engineering, 23, p.1537-1549 (2003) [CrossRef] [Google Scholar]
  7. R. Belarbi "Développement d’outils méthodologiques d’évaluation et d’intégration des systèmes évaporatifs pour le rafraîchissement passif des bâtiments", PhD, University of La Rochelle, France (1998) [Google Scholar]
  8. C. Maalouf, Etude du potentiel de rafraichissement d’un système évaporatif à désorption avec régénération solaire, PhD, University of La Rochelle, France (2006) [Google Scholar]
  9. V. Maisotsenko, L. E. Gillan, T. L. Heaton, and A. D. Gillan, "Method and plate apparatus for dew point evaporative cooler," U.S. Patent US6581402 B2, June 24 (2003) [Google Scholar]
  10. A. Hasan "Indirect evaporative cooling of air to a sub-wet bulb temperature," Appl. Therm. Eng., 30, pp. 2460-2468 (2010) [CrossRef] [Google Scholar]
  11. B. Riangvilaikul, S. Kumar "An experimental study of a novel dew point evaporative cooling system," Energy Build., 42, pp. 637-644 (2010) [CrossRef] [Google Scholar]
  12. J. Lee, D.Y. Lee "Experimental study of a counter flow regenerative evaporative cooler with finned channels," Int. J. Heat Mass Transf., 65, pp. 173-179 (2013) [CrossRef] [Google Scholar]
  13. R. Boukhanouf, A. Alharbi, H. G. Ibrahim, O. Amer, M. Worall, "Computer modelling and experimental investigation of building integrated sub-wet bulb temperature evaporative cooling system" Appl. Th. Eng., 115, 25 pp. 201-211 (2017) [CrossRef] [Google Scholar]
  14. E. F. Sowell and P. Haves, "Efficient solution strategies for building energy system simulation," Build. Phys., 33, pp. 309-317,(2001) [Google Scholar]
  15. C. Maalouf, E. Wurtz, L. Mora, "Effect of Free Cooling on the Operation of a Desiccant Evaporative Cooling System", International Journal of Ventilation, 7, pp. 125-138, (2008) [CrossRef] [Google Scholar]
  16. P. Xu, X. Ma, X. Zhao; A Dew Point Air Cooler toward Super Performance From conception, simulation, fabrication to laboratory testing and applied evaluation, Lambert Academic Publishing, pp. 332 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.