Open Access
E3S Web Conf.
Volume 85, 2019
EENVIRO 2018 – Sustainable Solutions for Energy and Environment
Article Number 07015
Number of page(s) 6
Section Environment
Published online 22 February 2019
  1. Allaby, M., A Dictionary of Geology and Earth Sciences (4th ed.). Oxford University Press. (2013). [Google Scholar]
  2. USGS. California Water Science Center. Retrieved from URL: (2017). [Google Scholar]
  3. Galloway, D. L., & Burbey, T. L., Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19, 1459-1486. doi:10.1007/s10040-011-0775-5 (2011). [Google Scholar]
  4. Poland, J. S., Guidebook to studies of land subsidence due to ground-water withdrawal. UNESCO. (1984). [Google Scholar]
  5. UNESCO. Land Subsidence. Retrieved from Land Subsidence: content/what-land-subsidence, (2015). [Google Scholar]
  6. Poland, J., Land subsidence stopped by artesianhead recovery, Santa Clara Valley. IAHS/AISH Pub. No. 121, 124-132. (1977). [Google Scholar]
  7. Bitelli, G., Bonsignore, F., Pellegrino, I., & Vittuari, L., Evolution of the techniques for subsidence monitoring at regional scale: the case of Emilia-Romagna region (Italy). 372, pp. 315-321. Copernicus Publications on behalf of the International Association of Hydrological Sciences. doi:10.5194/piahs-372-315-2015, (2015). [Google Scholar]
  8. Samsonov, S., d’Oreye, N., González, P., Tiampo, K., Ertolahti, L., & Clague, J., Rapidly accelerating subsidence in the Greater Vancouver region from two decades of ERS-ENVISAT-RADARSAT-2 DInSAR measurements. Remote Sensing of Environment, 143, 180-191. Retrieved from (2014). [Google Scholar]
  9. Castellazzi, P., Martel, R., Garfias-Soliz, J., Calderhead, A., Salas-García, J., Huang, J., & Rivera, A., Groundwater Deficit And Land Subsidence In Central Mexico Monitored By Grace And Radarsat-2. IEEE Geoscience and Remote Sensing Symposium (pp. 2597-2600). Quebec City:IEEE Xplore. doi:10.1109/IGARSS.2014.6947005, (2014). [Google Scholar]
  10. Solari, L., Ciampalini, A., Raspini, F., Bianchini, S., Zinno, I., Bonano, M., Casagli, N., Combined Use of C- and X-Band SAR Data for Subsidence Monitoring in an Urban Area. Geosciences, 7(21). doi:10.3390/geosciences7020021, (2017). [Google Scholar]
  11. Raspini, F., Loupasakis, C., Rozos, D., Adam, N., & Moretti, S., Ground subsidence phenomena in the Delta municipality region (Northern Greece):Geotechnical modeling and validation with Persistent Scatterer Interferometry. International Journal of Applied Earth Observation and Geoinformation, 28, 78-89. (2014). [CrossRef] [Google Scholar]
  12. Ruiz-Constan, A., Ruiz-Armenteros, A., Lamas-Fernandez, F., Martos-Rosillo, S., Delgado, J., Bekaert, D., . . . de Galdeano, C. Multi-temporal InSAR evidence of ground subsidence induced Multi-temporal InSAR evidence of ground subsidence induced. Environ Earth Sci, 75(242), 1-16. doi:10.1007/s12665-015-5051-x, (2016). [Google Scholar]
  13. Bakon, M., Papco, J., Perissin, D., Sousa, J. J., & Lazecky, M., Multi-sensor InSAR deformation monitoring over urban area of Bratislava (Slovakia). Procedia Computer Science, 100, 1127-1134. doi:10.1016/j.procs.2016.09.265, (2016). [CrossRef] [Google Scholar]
  14. Parcharidis, I., Lagios, E., Sakkas, V., Raucoules, D., Feurer, D., Le Mouelic, S., Cooksley, G. Subsidence monitoring within the Athens Basin (Greece) using space radar interferometric techniques. Earth Planets Space, 58, 505-513. (2006). [CrossRef] [Google Scholar]
  15. Karila, K., Karjalainen, M., Hyyppä, J., Koskinen, J., Saaranen, V., & Rouhiainen, P. A Comparison of Precise Leveling and Persistent Scatterer SAR Interferometry for Building Subsidence Rate Measurement. ISPRS Int. J. Geo-Inf., 2, 797-816. doi:10.3390/ijgi2030797, (2013). [CrossRef] [Google Scholar]
  16. Hirono, T. Niigata ground subsidence and groundwater change. (L. J. Tison, Ed.) Land subsidence, Internat. Assoc. Sci. Hydrology, 1, 144-161. (1969). [Google Scholar]
  17. Riley, F., Developments in borehole extensometry. (C. L. Johnson AI, Ed.) Land subsidence. Proceedings of the Third International Symposium on Land Subsidence, 169-186. (1984). [Google Scholar]
  18. Zerbini, S., Richter, B., Rocca, F., van Dam, T., & Matonti, F. A, Combination of Space and Terrestrial Geodetic Techniques to Monitor Land Subsidence:Case Study, the Southeastern Po Plain, Italy.JOURNAL OF GEOPHYSICAL RESEARCH, 112(B05401). doi:10.1029/2006JB004338, (2007). [Google Scholar]
  19. Armas, I., Gheorghe, M., Lendvai, A., Dumitru, P., Badescu, O., & Calin, A., InSAR validation based on GNSS measurements in Bucharest. International Journal of Remote Sensing, 37(32), 5565-5580. (2016). [Google Scholar]
  20. Bamler, R., & Hartl, P., Synthetic aperture radar interferometry. Inverse Problems, 14, R1-R54. (1998). [Google Scholar]
  21. Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., & Massonnet, D., InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19, February 2007). ESA Publications. (2007). [Google Scholar]
  22. Chelbi, S., Khireddine, A., & Charles, J. Interferometry process for satellite images SAR. ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, (pp. 180-184). Bursa, TURKEY. (2011). [Google Scholar]
  23. Declercq, P.-Y., Gerard, P., Pirard, E., Perissin, D., Walstra, J., & Devleeschouwer, X., Subsidence related to groundwater pumping for breweries in Merchtem area (Belgium), highlighted by Persistent Scaterrer Interferometry. Int J Appl Earth Obs Geoinformation, 63, 178-185. Retrieved from, (2017). [CrossRef] [Google Scholar]
  24. Wasowski, J., & Bovenga, F., Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, 174, 103-138. Retrieved from, (2014). [CrossRef] [Google Scholar]
  25. Tesauro, M., Berardino, P., Lanari, R., Sansosti, E., & Fornaro, G., Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry. Geophisical Research Letters, 27(13), 1961-1964. (2000). [CrossRef] [Google Scholar]
  26. Herrera, G., Fernandez, J., Tomas, R., Cooksley, G., & Mulas, J., Advanced interpretation of subsidence in Murcia (SE Spain) using A-DInSAR data-modelling and validation. Natural Hazards and Earth System Sciences, 9, 647-661. doi:10.5194/nhess-9-647-2009, (2009). [CrossRef] [Google Scholar]
  27. Fruneau, B., Deffontaines, B., Rudant, J.-P., Le Parmentier, A.-M., Colesanti, C., Le Mouelic, S., . .. Ferretti, A., Conventional And Ps Differential Sar Interferometry For Monitoring Vertical Deformation Due To Water Pumping: The Haussmann-St-Lazare Case Example (Paris, France). Proceedings of FRINGE 2003 Workshop, 1-5 December 2003. Frascati, Italy: (ESA SP-550. Retrieved from proceedings/papers/38_fruneau.pdf, (2004). [Google Scholar]
  28. Ferretti, A., Prati, C., & Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 39(1), 8-20. (2001). [Google Scholar]
  29. Berardino, P., Fornaro, G., & Lanari, R. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 40(11), 2375-2383,doi:10.1109/TGRS.2002.803792, (2002). [Google Scholar]
  30. Yan, Y., Doin, M.-P., López-Quiroz, P., Tupin, F., Fruneau, B., Pinel, V., & Trouvé, E., Mexico City Subsidence Measured by InSAR Time Series: Joint Analysis Using PS and SBAS Approaches. IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 5(4), 1312 -1326. doi:10.1109/JSTARS.2012.2191146. (2012). [CrossRef] [Google Scholar]
  31. Cabral-Cano, E., Dixon, T., Miralles-Wilhelm, F., Díaz-Molina, O., Sánchez-Zamora, O., & Carande, R., Space geodetic imaging of rapid ground subsidence in Mexico City. GSA Bulletin, 120(11/12), 1556-1566. doi:10.1130/B26001.1, (2008). [CrossRef] [Google Scholar]
  32. Auvinet, G., Méndez, E., & Juárez, M., Recent information on Mexico City subsidence. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering. Seoul, (2017). [Google Scholar]
  33. Sato, C., Haga, M., & Nishino, J., Land Subsidence and Groundwater. International Review for Environmental Strategies, 6(2), 403-424. Retrieved from and-groundwater-management, (2006). [Google Scholar]
  34. Yamamoto, S., Recent trend of land subsidence in Japan. IAHS/AISH Pub, No 121, p. 9-15, (1977). [Google Scholar]
  35. Shimizu, Ryosaku, Land subsidence in Japan. Booklet prepared for International Symposium (1969) [Google Scholar]
  36. Erkens, G., Bucx, T., Dam, R., de Lange, G., & Lambert, J. Sinking coastal cities. Proc. IAHS. 372, pp. 189-198. Copernicus Publications on behalf of the International Association of Hydrological Sciences. doi:10.5194/piahs-372-189-2015, (2015). [CrossRef] [Google Scholar]
  37. Rokugawa, S., & Nakamura, T., Long-range ground deformation monitoring by InSAR analysis. Proc. IAHS. 372, pp. 343-346. Copernicus Publications on behalf of the International Association of Hydrological Sciences. doi:10.5194/piahs-372-343-2015, (2015). [CrossRef] [Google Scholar]
  38. USGS, Texas Gulf Coast Groundwater and Land Subsidence: Over forty years of Research in the Houston-Galveston Region, houston_subsidence/home/ (2018) [Google Scholar]
  39. Qu, F., Lu, Z., Zhang, Q., Bawden, G. W., Kim, J.-W., Zhao, C., & Qu, W., Mapping ground deformation over Houston-Galveston, Texas using multi-temporal InSAR. Remote Sensing of Environment, 169, 290-306. Retrieved from, (2015). [CrossRef] [Google Scholar]
  40. Bawden, G., Johnson, M., Kasmarek, M., Brandt, J., & Middleton, C, Investigation of Land Subsidence in the Houston-Galveston Region of Texas by using Global Positioning System and Interferometric Synthetic Aperture Radar,1993-2000, Scientific Investigations Report 2012-5211, U.S. Geological Survey, (2012). [Google Scholar]
  41. Ivan, I.M., Popa, I., Up-to-date hydrodynamic and hydrochemical state of the Fratesti deep aquifer system in the Bucharest area, Transactions on Hydrotechnics, 57(71), Fascicola 1, (2012). [Google Scholar]
  42. Vîjdea, A. & Bindea, G.,. D7.1.33 GeoHazard Description for Bucharest, Enabling Access to Geological Information in Support of GMES (PANGEO),(2013) [Google Scholar]
  43. CCIAS, Integrated service for urban subsidence phenomena based on space-borne interferometric synthetic aperture radar (InSAR) and hydrogeological-geotechnical hybrid modeling "SIRYS"- Final Summary Report, (2015). [Google Scholar]
  44. Armaş, I., Mendes, D., Popa, R-G., Gheorghe, M., Popovici, D., Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?, Nature, 7(43762), (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.