Open Access
Issue
E3S Web Conf.
Volume 87, 2019
1st International Conference on Sustainable Energy and Future Electric Transportation (SeFet 2019)
Article Number 01005
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/20198701005
Published online 22 February 2019
  1. H. Bevrani, Robust Power System Frequency Control, Springer, (2009) [CrossRef] [Google Scholar]
  2. H. Bervani, T. Hiyama, Intelligent Automatic Generation control, CRC Press, (2011) [Google Scholar]
  3. O.I. Elgerd, Electric Energy Systems Theory – An Introduction, Tata McGraw Hill, New Delhi, (2000) [Google Scholar]
  4. K.P. Ibraheem, D.P. Kothari, Recent philosophies of automatic generation control strategies in power systems, IEEE Trans. Power Syst., 20, 346-357, (2005). [Google Scholar]
  5. J. Nanda, A. Mangla, S. Suri, Some findings on automatic generation control of an interconnected hydrothermal system with conventional controllers, IEEE Trans. on Energy Conv., 21, 187-193, (2006) [CrossRef] [Google Scholar]
  6. L.C. Saikia, J. Nanda, S. Mishra, Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system, Int. J. Elect. Power & Energy Systs., 33(3), 394-401, (2011) [CrossRef] [Google Scholar]
  7. R. K. Sahu, T.S. Gorripotu, S. Panda, Automatic generation control of multi-area power systems with diverse energy sources using teaching learning based optimization algorithm, Engg. Science & Technology, An International Journal, 19, 113-134, (2016) [CrossRef] [Google Scholar]
  8. E. S. Ali, S. M. Abd-Elazim, Bacteria foraging optimization algorithm based load frequency controller for interconnected power system, Int. J. Elect. Power & Energy Systs., 33(3), 633-638, (2011). [CrossRef] [Google Scholar]
  9. R.K. Sahu, S. Panda, U.K. Rout, D.K. Sahoo, Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller, Int. J. Elect. Power & Energy Systs., 77(3), 287–301, (2016). [CrossRef] [Google Scholar]
  10. G. Sharma, I. Nasiruddin, K.R. Niazi, R.C. Bansal, Optimal AGC of a multi-area power system with parallel AC/DC tie lines using output vector feedback control strategy, Int. J. Elect. Power & Energy Systs., 81, 22-31, (2016) [CrossRef] [Google Scholar]
  11. D. Guha, P.K. Roy, S. Banerjee, Load frequency control of interconnected power system using grey wolf optimization, Swarm and Evol. Compt., 27, 97-115, (2016) [CrossRef] [Google Scholar]
  12. S. Padhan, R.K. Sahu, S. Panda, Application of firefly algorithm for load frequency control of multi-area interconnected power system’, Elect. Power Compts and Syst., 42(13), 1419-1430, 2014. [CrossRef] [Google Scholar]
  13. M.S. Gonçalves, R. H. Lopez, L.F. Fadel, Search group algorithm: A new metaheuristic method for the optimization of truss structures design, Computers and Structures, 153, 165-184, (2015). [CrossRef] [Google Scholar]
  14. K.P.S. Parmar, S. Majhi, D.P. Kothari, Load frequency control of a realistic power system with multi-source power generation, Int. J. Elect. Power & Energy Systs., 42, 426-433, (2012). [CrossRef] [Google Scholar]
  15. H. Shabani, B. Vahidi, M.A. Ebrahimpour, Robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems, ISA Trans., 52, 88-95, (2012) [Google Scholar]
  16. X.S. Yang, Nature-Inspired Metaheuristic lgorithms, Luniver Press, UK, (2008) [Google Scholar]
  17. X.S. Yang, Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications, SAGA Lecture Notes in Computer Sciences, 5792, 169–178, (2009) [CrossRef] [Google Scholar]
  18. X.S. Yang, Firefly algorithm, stochastic test functions and design optimization, International Journal of Bio-inspired Computation, 2, 78–84, (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.