Open Access
E3S Web Conf.
Volume 90, 2019
7th Conference on Emerging Energy and Process Technology (CONCEPT 2018)
Article Number 01005
Number of page(s) 7
Section Sustainable Energy
Published online 02 April 2019
  1. C. Guo, L. Zhou, and J. Lv, ‘Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites’, Polym. Polym. Compos., vol. 21, no. 7, pp. 449–156, 2013. [Google Scholar]
  2. M. M. Nasef, ‘Radiation-grafted membranes for polymer electrolyte fuel cells: Current trends and future directions’, Chem. Rev., vol. 114, no. 24, pp. 12278–12329, 2014. [CrossRef] [PubMed] [Google Scholar]
  3. K.-D. Kreuer, ‘Ion Conducting Membranes for Fuel Cells and other Electrochemical Devices’, Chem. Mater., vol. 26, no. 1, pp. 361–380, 2013. [Google Scholar]
  4. E. Abouzari-Lotf, M. Etesami, and M. M. Nasef, Carbon-Based Nanocomposite Proton Exchange Membranes for Fuel Cells. Elsevier Inc., 2018. [Google Scholar]
  5. M. Zakeri, E. Abouzari-Lotf, M. M. Nasef, A. Ahmad, M. Miyake, T. M. Ting, and P. Sithambaranathan, ‘Fabrication and characterization of supported dual acidic ionic liquids for polymer electrolyte membrane fuel cell applications’, Arab. J. Chem., 2018. [Google Scholar]
  6. E. Abouzari-Lotf, M. M. Nasef, H. Ghassemi, M. Zakeri, A. Ahmad, and Y. Abdollahi, ‘Improved Methanol Barrier Property of Nafion Hybrid Membrane by Incorporating Nanofibrous Interlayer Self-Immobilized with High Level of Phosphotungstic Acid’, ACS Appl. Mater. Interfaces, vol. 7, no. 31, pp. 17008–17015, 2015. [Google Scholar]
  7. X. Li and A. Faghri, ‘Review and advances of direct methanol fuel cells (DMFCs) part I: Design, fabrication, and testing with high concentration methanol solutions’, J. Power Sources, vol. 226, pp. 223–240, 2013. [Google Scholar]
  8. A. A. Argun, J. N. Ashcraft, and P. T. Hammond, ‘Highly conductive, methanol resistant polyelectrolyte multilayers’, Adv. Mater., vol. 20, no. 8, pp. 1539–1543, 2008. [Google Scholar]
  9. J. Roziere and D. J. Jones, ‘Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells’, Annu. Rev. Mater. Res., vol. 33, no. 1, pp. 503–555, 2003. [Google Scholar]
  10. V. Parthiban, S. Akula, and A. K. Sahu, ‘Surfactant templated nanoporous carbon-Nafion hybrid membranes for direct methanol fuel cells with reduced methanol crossover’, J. Memb. Sci., vol. 541, pp. 127–136, Nov. 2017. [Google Scholar]
  11. E. Y. Choi, H. Strathmann, J. M. Park, and S. H. Moon, ‘Characterization of non-uniformly charged ion-exchange membranes prepared by plasma-induced graft polymerization’, J. Memb. Sci., vol. 268, no. 2, pp. 165–174, 2006. [Google Scholar]
  12. S.-C. Liao, K.-S. Chen, W.-Y. Chen, C.-Y. Chou, and K.-C. Wai, ‘Surface Graft Polymerization of Acrylamide onto Plasma Activated Nylon Microfiber Artificial Leather for Improving Dyeing Properties’, Int. J. Chem. Eng. Appl., vol. 4, no. 2, pp. 78–81, 2013. [Google Scholar]
  13. S. Belfer, R. Fainchtain, Y. Purinson, and O. Kedem, ‘Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled’, J. Memb. Sci., vol. 172, no. 1-2, pp. 113–124, 2000. [Google Scholar]
  14. M. R. Pereira and J. Yarwood, ‘ATR-FTIR spectroscopic studies of the structure and permeability of sulfonated poly(ether sulfone) membranes. Part 1.-Interfacial water-polymer interactions’, J. Chem. Soc. Faraday Trans., vol. 92, no. 15, pp. 2731–2735, 1996. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.