Open Access
Issue
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 01005
Number of page(s) 4
Section Laboratory Experimental Techniques: Particle Scale and Fabric
DOI https://doi.org/10.1051/e3sconf/20199201005
Published online 25 June 2019
  1. S. A Hall, M. Bornert, J. Desrues, Y. Pannier, N. Lenoir, G. Viggiani, P. Bésuelle (2010). Discrete and continuum analysis of localised deformation in sand using X-ray [mu] CT and volumetric digital image correlation. Géotechnique 60, 315-322. [CrossRef] [Google Scholar]
  2. R.E. Grim, Clay Mineralogy, (McGraw Hill, New York, 1953) [Google Scholar]
  3. G.W. Brindley, Sari .S. Kurtossy (1962). Quantitative determination of Kaolinite by X-ray diffraction. The American Mineralogist 47, 1213-1215. [Google Scholar]
  4. S. Diamond (1970). Micro-structure and pore structure of impact compacted clays. Clay and Clay Minerals 19, No.4, 239-249. [Google Scholar]
  5. J.E. Gillot (1970). Fabric of Leda clay investigated by optical, electron-optical, and X-ray diffraction methods. Engineering Geology 4, No. 2, 133-153. [Google Scholar]
  6. R. Pusch (1970). Microstructural change in soft quick clay at failure. Can. Geotech. J. 7, No. 1, 1-7. [Google Scholar]
  7. P. Delage, G. Lefebvre (1984). Microstructural analysis of inherent and induced anisotropy in clay. Canadian Geotechnical Journal 91, 21-35. [Google Scholar]
  8. Y-H. Wang, W-K. Siu (2006). Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations. Canadian Geotechnical Journal 43, 587-600. [CrossRef] [Google Scholar]
  9. A. Deirieh, I.Y. Chang, M.L. Whittaker, S. Weigand, D. Keane, J. Rix, J.T. Germaine, D. Joester, P.B. Flemings (2018). Particle arrangements in clay slurries: The case against the honeycomb structure. Applied Clay Science 152,166-172. [Google Scholar]
  10. H.J.M. Hanley, G.C. Straty, F. Tsvetkov (1994). A Small Angle Neutron Scattering Study of a Clay Suspension under Shear. Langmuir 10 No.9, 3362-3364. [Google Scholar]
  11. M. Morvan, D. Espinat, J. Lambard, Th. Zemb (1994). Ultrasmall-and small-angle X-ray scattering of smectite clay suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 82 No.2, 193-203. [CrossRef] [Google Scholar]
  12. L. Zhang, C. Jahns, B.S. Hsiao, B. Chu (2003). Synchrotron SAXS/WAXS and rheological studies of clay suspensions in silicone fluid. Journal of Colloid and Interface Science, 266 No.2, 339-345. [CrossRef] [PubMed] [Google Scholar]
  13. N.K. Toker, R. Ahmadi-Naghadeh (2018). A New Isotropic Specimen Preparation Method from Slurry for both Saturated and Unsaturated Triaxial Testing of a Low-Plasticity Silt. Journal of Colloid and Interface Science, 42 No.4. [Google Scholar]
  14. A. Guinier, G. Fournet, Small Angle Scattering of Xrays (3rd edn. John Wiley & Sons, New York, 1955) [Google Scholar]
  15. P.Y. Hicher, H Wahyudi, D. Tessier (2000). Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Mechanics of Cohesive-frictional Materials 5, 341-371. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.