Open Access
Issue
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 02014
Number of page(s) 6
Section Laboratory Experimental Techniques: Element Scale
DOI https://doi.org/10.1051/e3sconf/20199202014
Published online 25 June 2019
  1. Dyvik, R., Berre, T., Lacasse, S., and Raadim, B. (1987). Comparison of truly undrained and constant volume direct simple shear tests. Géotechnique, 37(1): 3-10. [CrossRef] [Google Scholar]
  2. Boulanger, R. W., Chan, C. K., Seed, H. B., and Seed, R. B. (1993). A low-compliance bi-directional cyclic simple shear apparatus. Geotechnical Testing Journal, 16(1): 36-45. [CrossRef] [Google Scholar]
  3. Airey, A, Budhu, M, and Wood, D. M. (1985). The behaviour of soils in simple shear. In Developments in soil mechanics and foundation engineering. 2. Edited by P. K. Banerjee and R. Butterfield. Applied Science Publishers, London, United Kingdom, 185-213. [Google Scholar]
  4. Franke, E., Kiekbusch, M., and Schuppener, B. (1979). A new direct simple shear device. Geotechnical Testing Journal, 2(4): 190-199. [CrossRef] [Google Scholar]
  5. Duku, P.M., Stewart, J. P, Whang, D. H, and Venugopal, R. (2007). Digitally controlled simple shear apparatus for dynamic soil testing. Geot. Testing Journal, 30(5): 1-10. [Google Scholar]
  6. Sadrekarimi, A. and Olson, S. M. (2009). A new ring shear device to measure the large displacement shearing behaviour of sands. Geot. Testing Journal, ASTM, 32(3): 1-12. [Google Scholar]
  7. Itasca Consulting Group, FLAC. (2010). Fast lagrangian analysis of continua in 2-dimensions 6.0, manual. Itasca, Minneapolis. [Google Scholar]
  8. Polito, C., Green, R. A., Dillon, E., Sohn, C. (2013). Effect of load shape on relationship between dissipated energy and residual excess pore pressure generation in cyclic triaxial tests. Canadian Geotechnical Journal, 50(11): 1118-1128. [CrossRef] [Google Scholar]
  9. Green, R. A., Mitchell, J. K., and Polito, C. P. (2000). An energy-based pore pressure generation model for cohesionless soils. In Proceedings of the John Booker Memorial Symposium-Developments in Theoretical Geomechanics, 16-17. Balkema, Rotterdam, the Netherlands. 383-390. [Google Scholar]
  10. Finn, W. D. L., "Liquefaction Potential: Developments Since 1976," Proceedings of the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, University of Missouri, Rolla, Missouri, 1981. [Google Scholar]
  11. Youd, T.L., et al. (2001). Liquefaction resistance of soils. Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10): 817-33. [CrossRef] [Google Scholar]
  12. Ishibashi M. A. Sherif W. L. Cheng (1981). Effect of Material Properties on Soil Liquefaction I. [Google Scholar]
  13. Y. P. Vaid, J. M. Fisher; R. H. Kuerbis; D. Negussey Particle Gradation and Liquefaction, Journal of Geotechnical Engineering Volume 116 Issue 4-April 1990 [Google Scholar]
  14. Karray, M., Lefebvre, G. and Ethier, Y. (2011). Relevés MMASW et évaluation du potentiel de liquéfaction au site du couvent de Baie-Saint-Paul. Technical report for Les Petites Franciscaines de Marie, Géowave Inc., Sherbrooke, Québec, Canada, p. 78. [Google Scholar]
  15. Atkinson, G. M. (2009). Earthquake time histories compatible with the 2005 National building code of Canada uniform hazard spectrum. Canadian Journal of Civil Engineering, 36(6): 991-1000. [CrossRef] [Google Scholar]
  16. National Building Code of Canada (2015). National Research Council, Ottawa. [Google Scholar]
  17. Seed, H.B., Idriss, I.M., Makdisi, F., and Banerjee, N. (1975). Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analysis. Report No. EERC 75-29, Earthquake Engineering Research Center, College of Engineering, Univ. of California, Berkeley, California, United States. [Google Scholar]
  18. Vucetic, M. and Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal Geotechnical Engineering, 117(1): 89-107. [CrossRef] [Google Scholar]
  19. Okur, D.V., Ansal, A. (2007) Stiffness degradation of natural fine grained soils during cyclic loading. Soil Dynamics and Earthquake Engineering 27: 843-854. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.