Open Access
Issue
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 11019
Number of page(s) 5
Section Treated Geomaterials: Chemical, Microbial, Electrokinetic
DOI https://doi.org/10.1051/e3sconf/20199211019
Published online 25 June 2019
  1. J.H. Yoon, K.C. Lee, N. Weiss, Y.H. Kho, K.H. Kang, Y.H. Park, Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosa, Int. J. Syst. Evol. Microbiol. 51 (2001) 1079-86. http://www.ncbi.nlm.nih.gov/pubmed/11411676. [CrossRef] [PubMed] [Google Scholar]
  2. J.M. Minto, E. MacLachlan, G. El Mountassir, R.J. Lunn, Rock fracture grouting with microbially induced carbonate precipitation, Water Resour. Res. 52 (2016) 8827-8844. doi: 10.1002/2016WR018884. [Google Scholar]
  3. A.B. Cunningham, A.J. Phillips, E. Troyer, E. Lauchnor, R. Hiebert, R. Gerlach, L. Spangler, Wellbore leakage mitigation using engineered biomineralization, Energy Procedia. 63 (2014) 4612-4619. doi: 10.1016/j.egypro.2014.11.494. [Google Scholar]
  4. A.J. Phillips, A.B. Cunningham, R. Gerlach, R. Hiebert, C. Hwang, B.P. Lomans, J. Westrich, C. Mantilla, J. Kirksey, R.A. Esposito, L. Spangler, Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study, Environ. Sci. Technol. (2016) acs.est.5b05559. doi: 10.1021/acs.est.5b05559. [Google Scholar]
  5. J.T. DeJong, K. Soga, S. a Banwart, W.R. Whalley, T.R. Ginn, D.C. Nelson, B.M. Mortensen, B.C. Martinez, T. Barkouki, Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions, J. R. Soc. Interface. 8 (2010) 1-15. doi: 10.1098/rsif.2010.0270. [CrossRef] [PubMed] [Google Scholar]
  6. L.A. van Paassen, M.P. Harkes, G.A. Van Zwieten, W.H. van der Zon, W.R.L. Van Der Star, M.C.M. van Loosdrecht, Scale up of BioGrout: A biological ground reinforcement method, Proc. 17th Int. Conf. Soil Mech. Geotech. Eng. Acad. Pract. Geotech. Eng. 3 (2009) 2328-2333. doi: 10.3233/978-1-60750-031-5-2328. [Google Scholar]
  7. M.G. Gomez, B.C. Martinez, J.T. DeJong, C.E. Hunt, L.A. DeVlaming, D.W. Major, S.M. Dworatzek, Field-scale bio-cementation tests to improve sands, Proc. Inst. Civ. Eng.-Gr. Improv. 168 (2015) 1-11. doi: 10.1680/grim.13.00052. [Google Scholar]
  8. M.O. Cuthbert, L.A. McMillan, S. Handley-Sidhu, M.S. Riley, D.J. Tobler, V.R. Phoenix, A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation., Environ. Sci. Technol. 47 (2013) 13637-43. doi: 10.1021/es402601g. [CrossRef] [PubMed] [Google Scholar]
  9. A. Al Qabany, K. Soga, Effect of chemical treatment used in MICP on engineering properties of cemented soils, Géotechnique. 63 (2013) 331-339. doi: 10.1680/geot.SIP13.P.022. [CrossRef] [Google Scholar]
  10. L. Cheng, R. Cord-Ruwisch, M.A. Shahin, Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation, Can. Geotech. J. 50 (2013) 81-90. doi: 10.1139/cgj-2012-0023. [CrossRef] [Google Scholar]
  11. L. Cheng, M.A. Shahin, D. Mujah, Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization, J. Geotech. Geoenvironmental Eng. 143 (2017) 04016083. doi: 10.1061/(ASCE)GT.1943-5606.0001586. [CrossRef] [Google Scholar]
  12. S. Choi, S. Wu, J. Chu, Biocementation for Sand Using an Eggshell as Calcium Source, J. Geotech. Geoenvironmental Eng. 142 (2016) 2-5. doi: 10.1061/(ASCE)GT.1943-5606.0001534. [Google Scholar]
  13. M.J. Cui, J.J. Zheng, R.J. Zhang, H.J. Lai, J. Zhang, Influence of cementation level on the strength behaviour of bio-cemented sand, Acta Geotech. 12 (2017) 971-986. doi: 10.1007/s11440-017-0574-9. [CrossRef] [Google Scholar]
  14. M. Li, K. Wen, Y. Li, L. Zhu, Impact of Oxygen Availability on Microbially Induced Calcite Precipitation (MICP) Treatment, Geomicrobiol. J. 35 (2018) 15-22. doi: 10.1080/01490451.2017.1303553. [Google Scholar]
  15. D. Li, T. Kan-liang, Z. Hui-li, W. Yu-yao, N. Kang-yi, Z. Shi-can, Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation, Constr. Build. Mater. 172 (2018) 251-262. doi: 10.1016/j.conbuildmat.2018.03.255. [Google Scholar]
  16. A. Mahawish, A. Bouazza, W.P. Gates, Effect of particle size distribution on the bio-cementation of coarse aggregates, Acta Geotech. (2017) 1-7. doi: 10.1007/s11440-017-0604-7. [Google Scholar]
  17. K. Rowshanbakht, M. Khamehchiyan, R.H. Sajedi, M.R. Nikudel, Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment, Ecol. Eng. 89 (2016) 49-55. doi: 10.1016/j.ecoleng.2016.01.010. [Google Scholar]
  18. D. Terzis, L. Laloui, 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation, Sci. Rep. 8 (2018) 1416. doi: 10.1038/s41598-018-19895-w. [CrossRef] [PubMed] [Google Scholar]
  19. L.A. van Paassen, R. Ghose, T.J.M. Van Der Linden, W.R.L. Van Der Star, M.C.M. Loosdrecht, Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment, J. Geotech. Geoenvironmental Eng. 136 (2010) 1721-1728. doi: 10.1061/(ASCE)GT.1943-5606.0000382. [CrossRef] [Google Scholar]
  20. L. Cheng, M. Shanin, R. Cord-Ruwisch, Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments, Géotechnique. 64 (2014) 1010-1013. http://www.icevirtuallibrary.com/content/article/10.1680/geot.14.T.025. [CrossRef] [Google Scholar]
  21. E. MacLachlan, Development of a microbially induced calcite and silica bio-grout for the sealing of fine aperture fractures, University of Strathclyde, 2017. [Google Scholar]
  22. C.M.R. Graddy, M.G. Gomez, L.M. Kline, S.R. Morrill, J.T. Dejong, D.C. Nelson, Diversity of Sporosarcina-like Bacterial Strains Obtained from Meter-Scale Augmented and Stimulated Biocementation Experiments, Environ. Sci. Technol. 52 (2018) 3997-4005. doi: 10.1021/acs.est.7b04271. [CrossRef] [PubMed] [Google Scholar]
  23. C.D. Burt, M.L. Cabrera, M.J. Rothrock, D.E. Kissel, Urea Hydrolysis and Calcium Carbonate Precipitation in Gypsum-Amended Broiler Litter, J. Environ. Qual. (2018) 162-169. doi: 10.2134/jeq2017.08.0337. [CrossRef] [PubMed] [Google Scholar]
  24. D. Gat, M. Tsesarsky, D. Shamir, Z. Ronen, Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria, Biogeosciences. 11 (2014) 2561-2569. doi: 10.5194/bg-11-2561-2014. [Google Scholar]
  25. J. Zhang, A. Zhou, Y. Liu, B. Zhao, Y. Luan, S. Wang, X. Yue, Z. Li, Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete, Sci. Rep. 7 (2017) 1-10. doi: 10.1038/s41598-017-15177-z. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.