Open Access
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 16014
Number of page(s) 5
Section Numerical Modelling: THCM Coupling, Localisation, Boundary Value Problems
Published online 25 June 2019
  1. D. Kolymbas. Sand as an archetypical natural solid. In D. Kolymbas and G. Viggiani, editors, Mechanics of Natural Solids, pages 1-26. Springer: Berlin (2009) [Google Scholar]
  2. G. Medicus, D. Kolymbas, and W. Fellin. Proportional stress and strain paths in barodesy. Int J Numer Anal Meth Geomech, 40,4 (2016) [CrossRef] [Google Scholar]
  3. G. Medicus and W. Fellin. An improved version of barodesy for clay. Acta Geotechnica, 12,2 (2017) [CrossRef] [Google Scholar]
  4. R. Butterfield. A natural compression law for soils (an advance on e-log p’), Géotechnique, 29,4 (1979) [Google Scholar]
  5. D. Mašín. A hypoplastic constitutive model for clays. Int J Numer Anal Meth Geomech, 29,4 (2005) [Google Scholar]
  6. J. H. Atkinson. An Introduction to the Mechanics of Soils and Foundations. McGraw Hill (1993) [Google Scholar]
  7. D. Muir Wood. Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press (1990) [Google Scholar]
  8. G. Medicus, W. Fellin, and F. Schranz. Konzepte der Barodesie. Bautechnik, 95,9 (2018) [CrossRef] [Google Scholar]
  9. W. Fellin and A. Ostermann. The critical state behaviour of barodesy compared with the Matsuoka-Nakai failure criterion. Int J Numer Anal Meth Geomech, 37,3 (2013) [CrossRef] [Google Scholar]
  10. T. Nakai. Modeling of soil behavior based on tij concept. In Proc of 13th ARCSMGE, 2 (2007) [Google Scholar]
  11. M. Bode, F. Schranz, G. Medicus, and W. Fellin. Vergleich unterschiedlicher Materialmodelle an einer Aushubsimulation. Geotechnik, (2019, in print). [Google Scholar]
  12. D. V. Griffths and J. Huang. Observations on the extended Matsuoka-Nakai failure criterion. Int J Numer Anal Meth Geomech, 33, 17 (2009) [Google Scholar]
  13. Brinkgreve, R.B.J.; Kumarswamy, S.; Swolfs. W.M. (2017): PLAXIS 2D 2017-User Manual. Delft, The Netherlands: Plaxis bv. [Google Scholar]
  14. Krabbenhoft K, Lymain, AV, Krabbenhoft J. OptumG2: Theory. Version 2016 (2016). [Google Scholar]
  15. Davis EH. Theories of plasticity and failure of soil masses. In Soil mechanics: selected topics. (ed. I. K. Lee), 341-54. New York: Elsevier (1968). [Google Scholar]
  16. Tschuchnigg F, Schweiger HF, Sloan SW. Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part l: Numerical studies considering non-associated plasticity. Computers and Geotechnics; 70:169-77 (2015b). [Google Scholar]
  17. B. Schneider-Muntau, G. Medicus and W. Fellin. Strength reduction method in barodesy Computers and Geotechnics, 95 (2018) [Google Scholar]
  18. B. Schneider-Muntau and I. Bathaeian, Simulation of shear bands with Soft PARticle Code (SPARC) and FE, GEM-International Journal on Geomathematics, 8,1 (2017) [CrossRef] [Google Scholar]
  19. B. Schneider-Muntau and I. Bathaeian, Simulation of settlement and bearing capacity of shallow foundations with soft particle code (SPARC) and FE, GEM-International Journal on Geomathematics, 9, 2 (2018) [CrossRef] [Google Scholar]
  20. Tschuchnigg F, Schweiger HF, Performance of strength reduction finite element techniques for slope stability problems, 16th European Conference on Soil Mechanics and Geotechnical Engineering "Geotechnical Engineering for Infrastructure and Development". ICE Publishing, 1687-1692 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.