Open Access
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 18007
Number of page(s) 6
Section Integrated Laboratory/Site Investigations, Geophysical Methods and Field Monitoring
Published online 25 June 2019
  1. Kramer, S.L. Geotechnical Earthquake Engineering (Prentice Hall, USA. 1996). [Google Scholar]
  2. Hobbs, W.H. Earthquake. (D. Appleton Co., New York, N. Y. 1907) [Google Scholar]
  3. Idriss, I. M., and Boulanger, R. W. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. J. Soil Dynamics and Earthquake Eng., 26, 115-130 (2006). [Google Scholar]
  4. Youd, T.L., et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geo-Environmental Engineering, 127(10), 817-33. (2001). [CrossRef] [Google Scholar]
  5. Karray, M. Utilisation de l’analyse modale des ondes de Rayleigh comme outil d’investigation géotechnique in-situ, Thèse de doctorat en génie civil, Département de génie, Université de Sherbrooke, Sherbrooke, (Québec), Canada. (1999) [Google Scholar]
  6. Nazarian, S. In Situ Determination of Elastic Moduli of Soil Deposits and Pavement Systems by Spectral-Analysis-of Surface-Waves Method, Doctoral Dissertation, The University of Texas, Austin, Texas, 452 pages. (1984) [Google Scholar]
  7. Lefebvre G., Karray. M. New Developments in in-situ Characterization Using Rayleigh Waves. 51 Canadian Geotechnical conference, Edmonton, Alberta, Canada. (1998) [Google Scholar]
  8. Karray, M., G. Lefebvre. Significance and evaluation of Poisson’s ratio in Rayleigh wave testing: Canadian Geotechnical Journal, 45(5): 624-635. (2008) [CrossRef] [Google Scholar]
  9. Park, C.B., Miller, R.D. and Xia, J. Multichannel analysis of surface waves (MASW); Geophysics, 64, p. 800-808. (1999) [CrossRef] [Google Scholar]
  10. Seed, H.B. and Idriss, I.M. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, ASCE 97(9): 1249-1273. (1971) [Google Scholar]
  11. Boulanger, R.W. & Idriss, I.M. CPT and SPT Based Liquefaction Triggering Procedures. Dept. Civil & Environmental Engineering, University of California at Davis, USA. (2014) [Google Scholar]
  12. Cetin K.O. Reliability-based assessment of seismic soil liquefaction initiation hazard. Ph.D. Thesis, University of California at Berkeley, Berkeley, CA. (2000) [Google Scholar]
  13. Lasley S, Green RA, Rodriguez-Marek A. A new stress reduction coefficient relationship for liquefaction triggering analyses. J Geotech Geoenviron Eng 142(11):06016013. (2016) [CrossRef] [Google Scholar]
  14. Green, R.A., Bommer, J.J., Rodriguez-Marek, A., Maurer, B.W., Stafford, P.J., Edwards, B., Kruiver, P.P., de Lange, G. & van Elk, J. Addressing limitations in existing ‘simplified’ liquefaction triggering evaluation procedures: application to induced seismicity in the Groningen gas field, Bulletin of Earthquake Engineering (2018) [Google Scholar]
  15. Finn, W. D., Bransby, P. L., and Pickering, D. J. Effect of strain history on liquefaction of sand: Am. Soc. Civil Engineers Proc., Jour. Soil Mechanics and Found. Div., 96(SM6) 1917-1934. (1970). [Google Scholar]
  16. Hussien, M.N., and Karray, M. Shear wave velocity as a geotechnical parameter: an overview. Canadian Geotechnical Journal, 53(2): 252-272. (2016). [CrossRef] [Google Scholar]
  17. Itasca Consulting Group, FLAC. Fast lagrangian analysis of continua in 2-dimensions 6.0 (manual. Itasca, Minneapolis 2010). [Google Scholar]
  18. Atkinson, G. M. Earthquake time histories compatible with the 2005 National building code of Canada uniform hazard spectrum. Canadian Journal of Civil Engineering, 36(6): 991-1000. (2009). [CrossRef] [Google Scholar]
  19. Idriss, I. M., and Boulanger, R. W. Semi-empirical procedures for evaluating liquefaction potential during earthquakes, in Proceedings 11th International Conference on Soil Dynamics and Earthquake Engineering, and 3rd International Conference on Earthquake Geotechnical Engineering, D. (2004). [Google Scholar]
  20. Perret, D. Desgagnés, P. and Pelletier, S. A critical appraisal of some rd relationships for liquefaction analyses in Eastern Canada with the simplified procedure. Proceedings, 66th Canadian Geotechnical Conference, GeoMontreal, 8 p. (2013). [Google Scholar]
  21. Karray, M., and Lefebvre, G. Techniques for mode separation in Rayleigh wave testing, Soil Dynamics and Earthquake Engineering, 29: 607-619. (2009). [CrossRef] [Google Scholar]
  22. Nakamura, Y., A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR RTRI, 30, 25-33. (1989). [Google Scholar]
  23. Beroya, M. A. A., Aydin, A., Tiglao, R., and Lasala, M. Use of microtremor in liquefaction hazard mapping. Eng Geol 107:140-153. (2009). [Google Scholar]
  24. Karray, M., Lefebvre, G. Patent: Method and Algorithm for Using Surface Waves. (U.S.A. 7,330,799)-(Canada. CA 2510016) (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.