Open Access
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
Article Number 06006
Number of page(s) 8
Section New Construction Technologies
Published online 29 May 2019
  1. A. Ilyushin and B. Pobadrya, Fundamentals of the mathematical theory thermo-viscoelasticity (Science, Moscow, 1970) [Google Scholar]
  2. Y. Rabotnov, Elements of the Hereditary Mechanics of Solids (Nauka, Moscow, 1977) [Google Scholar]
  3. M. Koltunov, Creep and Relaxation (Viszhaya Shkola, Moscow, 1976) [Google Scholar]
  4. R. Christensen, Theory of Viscoelasticity (Academic Press, New York, 1971) [Google Scholar]
  5. A. Malmeyster, V. Tamuzh, and G. Teters, Resistance of Composite Materials (Zinatne, Riga, 1980) [Google Scholar]
  6. A. Bogdanovich, Nonlinear Dynamic Problems for Composite Cylindrical Shells (Elsevier Science Publishers Ltd, New York, 1993) [Google Scholar]
  7. C. W. Bert, Material damping: An introductory review of mathematic measures and experimental technique, Journal of Sound and Vibration, 29, 129–153 (1973) [Google Scholar]
  8. S. Menon and J. Tang, A State-space approach for the dynamic analysis of viscoelastic systems, Computers and structures, 82, 1123–1130 (2004) [Google Scholar]
  9. A. Muravyov, Analytical solutions in the time domain for vibration problems of discrete viscoelastic systems, Journal of Sound and Vibration, 199, 337–348 (1997) [Google Scholar]
  10. D. Golla and P. Hughes, Dynamics of viscoelastic structures – a time domain, finite element formulation, Journal of Applied Mechanics, 52, 897–906 (1985) [Google Scholar]
  11. F. Badalov and B. Usmonov, Vibrations hereditarity-deformable of a airfoil with aileron in an air flow, Academy of Science of Uzbekistan, Tashkent, (2004), pp. 51–57. [Google Scholar]
  12. F. Badalov, T. Kholmatov, and G. Shodmonov, About one generalization of Newmark’s method for solving IDE of dynamic problems of viscoelastic linear theory, Dokl. Akad. Nauk Resp. Uzbekistan, 8 (1999) [Google Scholar]
  13. F. Badalov, K. Eshmatov, and M. Yusupov, On certain methods of solving systems of integro-differential equations encountered in viscoelasticity problems, Journal of Applied Mathematics and Mechanics, 51, 867–871 (1987) [CrossRef] [Google Scholar]
  14. F. Badalov, Method of series in nonlinear hereditary theory of viscoelasticity (Fan, Uzbekistan, 1980) [Google Scholar]
  15. F. Badalov, Methods of solution of integral and integro-differential equations of hereditary viscoelasticity (Mekhnat, Uzbekistan, 1987) [Google Scholar]
  16. F. Badalov and S. Ganikhanov, Vibration of hereditary-deformable elements of structure of flying vehicles (TSAI, Uzbekistan, 2000) [Google Scholar]
  17. H. Robert, Scanlan, and R. Rosenbaum, Introduction to the study of Aircraft Vibration and Flutter (Macmillan, New York, 1951) [Google Scholar]
  18. M. Keldysh, Selected Works. The Mechanics (Science, Moscow, 1985) [Google Scholar]
  19. R. L. Bisplinghoff, H. Ashley, and R. Halfman, Aeroelasticity (Dover, New York, 1996) [Google Scholar]
  20. B. Usmonov, Numerical Solution of Hereditary Equations with a Weakly Singular Kernel for Vibration Analysis of Viscoelastic Systems (2015) Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 69 (6), pp. 326-330. [Google Scholar]
  21. B. Usmonov, Q. Rakhimov, and A. Akhmedov, Analysis of numerical solutions of a hereditary deformable system, International Journal of Mechanical and Production Engineering Research and Development 8, 403–408 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.