Open Access
Issue |
E3S Web Conf.
Volume 99, 2019
Central Asian DUst Conference (CADUC 2019)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 8 | |
Section | Atmospheric dust at its sink regions | |
DOI | https://doi.org/10.1051/e3sconf/20199903001 | |
Published online | 18 June 2019 |
- P. Knippertz, and J.-B. Stuut, eds. Mineral Dust: A Key Player in the Earth System (Springer, Dordrecht, 2014) [Google Scholar]
- C. Textor, M. Schulz et al., “Analysis and quantification of the diversities of aerosol life cycles within AeroCom,” Atmos. Chem. Phys. 6, 1777-1813 (2006) [Google Scholar]
- A. T. Evan, G. R. Foltz et al., “Influence of African dust on ocean-atmosphere variability in the tropical Atlantic,” Nat. Geosci. 4, 762-765 (2011) [Google Scholar]
- J. H. Seinfeld, G. R. Carmichael et al., “ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution,” B. Am. Meteorol. Soc. 85, 367-380 (2004) [CrossRef] [Google Scholar]
- J. Huang, T. Wang et al., “Climate effects of dust aerosols over East Asian arid and semiarid regions,” J. Geophys. Res. 119, 11, 398-311, 416 (2014) [Google Scholar]
- G. Myhre, D. Shindell et al., “Anthropogenic and Natural Radiative Forcing,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2013), pp. 659-740 [Google Scholar]
- O. Boucher, D. Randall et al., “Clouds and Aerosols,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2013), pp. 571-657 [Google Scholar]
- I. N. Sokolik, and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423-9444 (1999) [Google Scholar]
- H. Moosmüller, J. P. Engelbrecht et al., “Single scattering albedo of fine mineral dust aerosols controlled by iron concentration,” J. Geophys. Res. 117, D11210 (2012) [Google Scholar]
- I. N. Sokolik, and O. B. Toon, “Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths,” J. Geophys. Res. 103, 8813-8826 (1998) [Google Scholar]
- C. Di Biagio, H. Boucher et al., “Variability of the infrared complex refractive index of African mineral dust: experimental estimation and implications for radiative transfer and satellite remote sensing,” Atmos. Chem. Phys. 14, 11093-11116 (2014) [Google Scholar]
- Y. Yin, and L. Chen, “The effects of heating by transported dust layers on cloud and precipitation: a numerical study,” Atmos. Chem. Phys. 7, 3497-3505 (2007) [Google Scholar]
- S. Solomos, G. Kallos et al., “An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation,” Atmos. Chem. Phys. 11, 873-892 (2011) [Google Scholar]
- D. Rosenfeld, Y. Rudich et al., “Desert dust suppressing precipitation: A possible desertification feedback loop,” P. Natl. Acad. Sci. USA 98, 5975-5980 (2001) [CrossRef] [Google Scholar]
- R. C. Sullivan, M. J. K. Moore et al., “Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles,” Atmos. Chem. Phys. 9, 3303-3316 (2009) [Google Scholar]
- K. A. Koehler, S. M. Kreidenweis et al., “Hygroscopicity and cloud droplet activation of mineral dust aerosol,” Geophys. Res. Lett. 36, L08805 (2009) [Google Scholar]
- O. Möhler, P. R. Field et al., “Efficiency of the deposition mode ice nucleation on mineral dust particles,” Atmos. Chem. Phys. 6, 3007-3021 (2006) [Google Scholar]
- F. Zimmermann, S. Weinbruch et al., “Ice nucleation properties of the most abundant mineral dust phases,” J. Geophys. Res. 113, D23204 (2008) [Google Scholar]
- J. D. Yakobi-Hancock, L. A. Ladino et al., “Feldspar minerals as efficient deposition ice nuclei,” Atmos. Chem. Phys. 13, 11175-11185 (2013) [Google Scholar]
- R. Swap, M. Garstang et al., “Saharan dust in the Amazon Basin,” Tellus 44B, 133-149 (1992) [CrossRef] [Google Scholar]
- A. Eger, P. C. Almond et al., “Phosphorus fertilization by active dust deposition in a superhumid, temperate environment-Soil phosphorus fractionation and accession processes,” Global Biogeochem. Cy. 27, 108-118 (2013) [CrossRef] [Google Scholar]
- G. S. Okin, A. R. Baker et al., “Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron,” Global Biogeochem. Cy. 25, GB2022 (2011) [Google Scholar]
- N. M. Mahowald, S. Engelstaedter et al., “Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations,” Annu. Rev. Mar. Sci. 1, 245-278 (2008) [CrossRef] [Google Scholar]
- M. M. Mills, C. Ridame et al., “Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic,” Nature 429, 292-294 (2004) [CrossRef] [PubMed] [Google Scholar]
- E. Journet, K. V. Desboeufs et al., “Mineralogy as a critical factor of dust iron solubility,” Geophys. Res. Lett. 35, L07805 (2008) [Google Scholar]
- Z. Shi, M. D. Krom et al., “Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review,” Aeolian Res. 5, 21-42 (2012) [Google Scholar]
- N. Mahowald, “Aerosol Indirect Effect on Biogeochemical Cycles and Climate,” Science 334, 794-796 (2011) [Google Scholar]
- V. H. Garrison, E. A. Shinn et al., “African and Asian Dust: From Desert Soils to Coral Reefs,” BioScience 53, 469-480 (2003) [Google Scholar]
- A. Paytan, K. R. M. Mackey et al., “Toxicity of atmospheric aerosols on marine phytoplankton,” P. Natl. Acad. Sci. USA 106, 4601-4605 (2009) [CrossRef] [Google Scholar]
- N. Rastogi, and M. M. Sarin, “Chemistry of aerosols over a semi-arid region: Evidence for acid neutralization by mineral dust,” Geophys. Res. Lett. 33, L23815 (2006) [Google Scholar]
- D. F. Gatz, W. R. Barnard et al., “The role of alkaline materials in precipitation chemistry: A brief review of the issues,” Water Air Soil Pollut. 30, 245-251 (1986) [Google Scholar]
- D. M. Cwiertny, M. A. Young et al., “Chemistry and Photochemistry of Mineral Dust Aerosol,” Annu. Rev. Phys. Chem. 59, 27-51 (2008) [CrossRef] [PubMed] [Google Scholar]
- M. Ndour, B. D’Anna et al., “Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations,” Geophys. Res. Lett. 35 (2008) [Google Scholar]
- C. R. Usher, A. E. Michel et al., “Reactions on Mineral Dust,” Chem. Rev. 103, 4883-4940 (2003) [CrossRef] [PubMed] [Google Scholar]
- A. Matsuki, A. Schwarzenboeck et al., “Cloud processing of mineral dust: direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006,” Atmos. Chem. Phys. 10, 1057-1069 (2010) [Google Scholar]
- A. G. Cook, P. Weinstein et al., “Health effects of natural dust,” Biol. Trace Elem. Res. 103, 1-15 (2005) [CrossRef] [PubMed] [Google Scholar]
- P. D. Burton, and B. H. King, “Spectral Sensitivity of Simulated Photovoltaic Module Soiling for a Variety of Synthesized Soil Types,” IEEE J. Photovolt. 4, 890-898 (2014) [CrossRef] [Google Scholar]
- T. Sarver, A. Al-Qaraghuli et al., “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches,” Renewable and Sustainable Energy Reviews 22, 698-733 (2013) [CrossRef] [Google Scholar]
- U. Kueppers, C. Cimarelli et al., “The thermal stability of Eyjafjallajökull ash versus turbine ingestion test sands,” J. Appl. Volcanol. 3, 4 (2014) [CrossRef] [Google Scholar]
- Y. Shao, Physics and Modelling of Wind Erosion. (Springer, 2008) [Google Scholar]
- J. F. Kok, E. J. R. Parteli et al., “The physics of wind-blown sand and dust,” Rep. Prog. Phys. 75, 106901 (2012) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- G. Y. Jeong, “Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils,” J. Geophys. Res. 113, D02208 (2008) [Google Scholar]
- D. Scheuvens, and K. Kandler, “On composition, morphology and size distribution of airborne mineral dust,” in Mineral dust - a key player in the earth system, P. Knippertz, and J.-B. Stuut, eds. (Springer, 2014), p. 35pp. [Google Scholar]
- D. Scheuvens, L. Schütz et al., “Bulk composition of northern African dust and its source sediments - a compilation,” Earth-Sci. Rev. 116, 170-194 (2013) [CrossRef] [Google Scholar]
- X. L. Zhang, G. J. Wu et al., “What is the real role of iron oxides in the optical properties of dust aerosols?,” Atmos. Chem. Phys. 15, 12159-12177 (2015) [Google Scholar]
- K. Kandler, N. Benker et al., “Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electron microscopy,” Atmos. Environ. 41, 8058-8074 (2007) [Google Scholar]
- K. Deboudt, A. Gloter et al., “Red-ox speciation and mixing state of iron in individual African dust particles,” J. Geophys. Res. 117, D12307 (2012) [Google Scholar]
- G. Y. Jeong, M. Y. Park et al., “Mineralogical properties and internal structures of individual fine particles of Saharan dust,” Atmos. Chem. Phys. 16, 12397-12410 (2016) [Google Scholar]
- A. Laskin, M. J. Iedema et al., “Direct observation of completely processed calcium carbonate dust particles,” Faraday Discuss. 130, 453-468 (2005) [CrossRef] [PubMed] [Google Scholar]
- A. Matsuki, Y. Iwasaka et al., “Heterogeneous sulfate formation on dust surface and its dependence on mineralogy: balloon-borne observations from balloon-borne measurements in the surface atmosphere of Beijing, China,” Water Air Soil Pollut. 5, 101-132 (2005) [Google Scholar]
- J. D. Atkinson, B. J. Murray et al., “The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds,” Nature 498, 355-358 (2013) [CrossRef] [PubMed] [Google Scholar]
- P. W. Boyd, D. S. Mackie et al., “Aerosol iron deposition to the surface ocean - Modes of iron supply and biological responses,” Mar. Chem. 120, 128-143 (2010) [Google Scholar]
- G. S. Okin, N. Mahowald et al., “Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems,” Global Biogeochem. Cy. 18, GB2005 (2004) [Google Scholar]
- J. Boy, and W. Wilcke, “Tropical Andean forest derives calcium and magnesium from Saharan dust,” Global Biogeochem. Cy. 22, GB1027 (2008) [Google Scholar]
- K. Kandler, K. Lieke et al., “Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral dust experiment: particle chemistry, shape, mixing state and complex refractive index,” Tellus 63B, 475-496 (2011) [CrossRef] [Google Scholar]
- B. Fubini, and I. Fenoglio, “Toxic Potential of Mineral Dusts,” Elements 3, 407-414 (2007) [CrossRef] [Google Scholar]
- W. W. Wood, D. Clark et al., “Eolian Transport of Geogenic Hexavalent Chromium to Ground Water,” Groundwater 48, 19-29 (2010) [CrossRef] [Google Scholar]
- M. C. Reheis, J. R. Budahn et al., “Compositions of modern dust and surface sediments in the Desert Southwest, United States,” J. Geophys. Res. 114(2009) [Google Scholar]
- P. Formenti, S. Caquineau et al., “Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition,” Atmos. Chem. Phys. 14, 10663-10686 (2014) [Google Scholar]
- L. Schütz, and M. Sebert, “Mineral Aerosols and Source Identification,” J. Aerosol Sci. 18, 1-10 (1987) [Google Scholar]
- C. Rodriguez-Navarro, F. di Lorenzo et al., “Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event,” Atmos. Chem. Phys. 18, 10089-10122 (2018) [Google Scholar]
- I. Menéndez, J. L. Díaz-Hernández et al., “Airborne dust accumulation and soil development in the North-East sector of Gran Canaria (Canary Islands, Spain),” J. Arid Environ. 71, 57-81 (2007) [Google Scholar]
- S. Caquineau, A. Gaudichet et al., “Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions,” J. Geophys. Res. 107, 4251 (2002) [Google Scholar]
- W. Lu, W. Zhao et al., “Iron Mineralogy and Speciation in Clay-Sized Fractions of Chinese Desert Sediments,” J. Geophys. Res. 122, 13, 458-413, 471 (2017) [Google Scholar]
- P. Formenti, L. Schütz et al., “Recent progress in understanding physical and chemical properties of mineral dust,” Atmos. Chem. Phys. 11, 8231-8256 (2011) [Google Scholar]
- E. Journet, Y. Balkanski et al., “A new data set of soil mineralogy for dust-cycle modeling,” Atmos. Chem. Phys. 14, 3801-3816 (2014) [Google Scholar]
- E. Fitzgerald, A. P. Ault et al., “Comparison of the mixing state of long-range transported Asian and African mineral dust,” Atmos. Environ. 115, 19-25 (2015) [Google Scholar]
- W. Li, L. Shao et al., “A review of single aerosol particle studies in the atmosphere of East Asia:morphology, mixing state, source, and heterogeneous reactions,” J. Clean. Prod. 112, 1330-1349 (2016) [Google Scholar]
- H. Yuan, G. Zhuang et al., “Composition and mixing of individual particles in dust and nondust conditions of north China, spring 2002,” J. Geophys. Res. 111, D20208 (2006) [Google Scholar]
- K. Okada, and K. Kai, “Features and elemental composition of mineral particles collected in Zhangye, China,” J. Meteor. Soc. Japan 73, 947-957 (1995) [CrossRef] [Google Scholar]
- D. Trochkine, Y. Iwasaka et al., “Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan,” J. Geophys. Res. 108, 8642 (2003) [Google Scholar]
- F. Wu, D. Zhang et al., “Soil-derived sulfate in atmospheric dust particles at Taklimakan desert,” Geophys. Res. Lett. 39, L24803 (2012) [Google Scholar]
- D. Scheuvens, K. Kandler et al., “Individual-particle analysis of airborne dust samples collected over Morocco in 2006 during SAMUM 1,” Tellus 63B, 512-530 (2011) [CrossRef] [Google Scholar]
- B. M. Moskowitz, R. L. Reynolds et al., “Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara,” Aeolian Res. 22, 93-106 (2016) [Google Scholar]
- Y. Iwasaka, G. Y. Shi et al., “Nature of Atmospheric Aerosols over the Desert Areas in the Asian Continent: Chemical State and Number Concentration of Particles Measured at Dunhuang, China,” Water Air Soil Pollut. 3, 129-145 (2003) [Google Scholar]
- X.-B. Fan, K. Okada et al., “Mineral particles collected in china and japan during the same Asian dust-storm event,” Atmos. Environ. 30, 347-351 (1996) [Google Scholar]
- K. Okada, H. Naruse et al., “X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North Pacific Ocean,” Atmos. Eviron. A 24, 1369-1378 (1990) [CrossRef] [Google Scholar]
- D. Zhang, and Y. Iwasaka, “Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996,” Atmos. Environ. 33, 3213-3223 (1999) [Google Scholar]
- D. Zhang, and Y. Iwasaka, “Chlorine deposition on dust particles in marine atmosphere,” Geophys. Res. Lett. 28, 3613-3616 (2001) [Google Scholar]
- D. Zhang, and Y. Iwasaka, “Size change of Asian dust particles caused by sea salt interaction:Measurements in southwestern Japan,” Geophys. Res. Lett. 31, L15102 (2004) [Google Scholar]
- Y. Iwasaka, M. Yamato et al., “Transport of Asian dust (KOSA) particles; importance of weak KOSA events on the geochemical cycle of soil particles,” Tellus B 40B, 494-503 (1988) [CrossRef] [Google Scholar]
- Y. Iwasaka, G.-Y. Shi et al., “Pool of dust particles over the Asian continent: Balloon-borne optical particle counter and ground-based lidar measurements at Dunhuang, China,” Environ. Monit. Assess. 92, 5-24 (2004) [CrossRef] [PubMed] [Google Scholar]
- D. Zhang, J. Zang et al., “Mixture state of individual Asian dust particles at a coastal site of Qingdao, China,” Atmos. Environ. 37, 3895-3901 (2003) [Google Scholar]
- D. Zhang, Y. Iwasaka et al., “Mixture state and size of Asian dust particles collected at southwestern Japan in spring 2000,” J. Geophys. Res. 108 (2003) [Google Scholar]
- Y. Iwasaka, G.-Y. Shi et al., “Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: possibility of long-range transport,” Air Qual. Atmos. Health 2, 29-38 (2009) [Google Scholar]
- Y. Tobo, D. Zhang et al., “Hygroscopic mineral dust particles as influenced by chlorine chemistry in the marine atmosphere,” Geophys. Res. Lett. 36, L05817 (2009) [Google Scholar]
- X. Wang, T. Hua et al., “Aeolian salts in Gobi deserts of the western region of Inner Mongolia:Gone with the dust aerosols,” Atmos. Res. 118, 1-9 (2012) [Google Scholar]
- M. O. Andreae, R. J. Charlson et al., “Internal Mixture of Sea Salt, Silicates, and Excess Sulfate in Marine Aerosols,” Science 232, 1620-1623 (1986) [Google Scholar]
- K. Kandler, K. Schneiders et al., “Composition and mixing state of atmospheric aerosols determined by electron microscopy: method development and application to aged Saharan dust deposition in the Caribbean boundary layer,” Atmos. Chem. Phys. 18, 13429-13455 (2018) [Google Scholar]
- N. Niimura, K. Okada et al., “Formation of Asian Dust-Storm Particles Mixed Internally with Sea Salt in the Atmosphere,” J. Meteor. Soc. Japan 76, 275-288 (1998) [CrossRef] [Google Scholar]
- D. Zhang, Y. Iwasaka et al., “Coarse and accumulation mode particles associated with Asian dust in southwestern Japan,” Atmos. Environ. 40, 1205-1215 (2006) [Google Scholar]
- C. Denjean, S. Caquineau et al., “Long-range transport across the Atlantic in summertime does not enhance the hygroscopicity of African mineral dust,” Geophys. Res. Lett. 42, 7835-7843 (2015) [Google Scholar]
- E. A. Reid, J. S. Reid et al., “Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis,” J. Geophys. Res. 108, 8591 (2003) [Google Scholar]
- V. M. Karyampudi, S. P. Palm et al., “Validation of the Saharan Dust Plume Conceptual Model Using Lidar, Meteosat, and ECMWF Data,” Bull. Am. Met. Soc. 80, 1045-1075 (1999) [CrossRef] [Google Scholar]
- K. Kandler, L. Schütz et al., “Size distribution, mass concentration, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006,” Tellus 61B, 32-50 (2009) [CrossRef] [Google Scholar]
- J. Gasteiger, S. Groß et al., “Particle settling and vertical mixing in the Saharan Air Layer as seen from an integrated model, lidar, and in situ perspective,” Atmos. Chem. Phys. 17, 297-311 (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.