Open Access
E3S Web Conf.
Volume 101, 2019
2019 10th International Conference on Environmental Science and Development (ICESD 2019)
Article Number 03004
Number of page(s) 5
Section Air and Climate
Published online 14 June 2019
  1. IPCC, “Climate Change 2014 Synthesis Report Summary Chapter for Policymakers”, IPCC, 1-31, (2014). [Google Scholar]
  2. Widlansky, M. J., Annamalai, H., Gingerich, S. B., Storlazzi, C. D., Marra, J. J., Hodges K. I. and Kitoh, A. A., “Tropical Cyclone Projections : Changing Climate Threats for Pacific Island Defense Installations”, Weather. Clim. Soc., 11, 3–15 (2019). [CrossRef] [Google Scholar]
  3. Martínez-Castro, D.,Vichot-Llano, A.,Bezanilla-Morlot, A., Centella-Artola, A., Campbell, J., Giorgi, F., Viloria-Holguin, C.C. “The performance of RegCM4 over the Central America and Caribbean region using different cumulus parameterizations”, Clim. Dyn. (2017). [Google Scholar]
  4. Zeng, S., Riedi, J., Trepte, C. R., Winker, D. M. and Hu., Y. X., “Study of global cloud droplet number concentration with A-Train satellites”, Atmos. Chem. Phys., 14, 7125–7134 (2014). [CrossRef] [Google Scholar]
  5. Sharma, T., Gusain, A. and Karmakar, S. “Future Hydrologic Scenarios in India Under Climate Change”, Clim. Chang. Signals Response, 39–59 (2019). [CrossRef] [Google Scholar]
  6. Pathak, P. A. B., Bhuyan, F. S. P. K. and Giorgi, F., “Obtaining best parameterization scheme of RegCM 4 . 4 for aerosols and chemistry simulations over the CORDEX South Asia”, Clim. Dyn. (2019). [Google Scholar]
  7. Ahn, K. and Kim, Y., “Incorporating Climate Model Similarities and Hydrologic Error Models to Quantify Climate Change Impacts on Future Riverine”, J. Hydrol. (2018). [Google Scholar]
  8. Nengker, T., Choudhary, A., Dimri, A. P., Assessment of the performance of CORDEX-SA experiments in simulating seasonal mean temperature over the Himalayan region for the present climate : Part I, Springer Berlin Heidelberg (2017). [Google Scholar]
  9. Wang, L., Cheung, K. K. W., Tam, C-Y, Taib, A. P. K. and Lid, Y., “Evaluation of the Regional Climate Model over the Loess Plateau of China”, Int. J. Climatol., 38, June, 35–54 (2018). [CrossRef] [Google Scholar]
  10. Gibba, P., Sylla, M. B., Okogbue, E. C., Gaye, A. T., Nikiema, M. and Kebe, I., “State-of-the-art climate modeling of extreme precipitation over Africa : analysis of CORDEX added-value over CMIP5”, Theor. and Appl. Climatol., 1-17 (2018). [Google Scholar]
  11. Pan Z., Segal, M., Turner, R. and Takle, E., “Model simulation of Impacts of Transient surface wetness on summer rainfall in the united states midwest during drought and flood years”, Mon. Weather Rev., 123, 1575–1581 (1995). [CrossRef] [Google Scholar]
  12. Dudek, M.P., Zhong Liang, X. and Wang, W.-K., “A regional climate model study of the scale dependency of cloud-radiation interactions”, J. Clim., 9, 1221–1234 (1996). [CrossRef] [Google Scholar]
  13. Bosilovich, M.G. and Sun, W.-Y., “Numerical Simulation of the 1993 Midwestern Flood : Land – Atmosphere Interactions”, J. Clim., 12, 1490–1505 (1999). [CrossRef] [Google Scholar]
  14. Schar, C., Luthi, D. and Beyerle, U., “The Soil – Precipitation Feedback : A Process Study with a Regional Climate Model The Soil – Precipitation Feedback : A Process Study with a Regional Climate Model”, J. Clim., 0442, March, 722–741 (1999). [CrossRef] [Google Scholar]
  15. Barros, A. P. and Hwu, W., “A study of land-atmosphere interactions during summertime rainfall using a mesoscale model”, J. Geophys. Res. Atmos., 107, D14, 1–18 (2002). [CrossRef] [Google Scholar]
  16. Sen, O.L., Wang, Y., and Wang, B., “Impact of Indochina Deforestation on the East Asian Summer Monsoon”, J. Clim., 17, 1366–1380 (2004). [CrossRef] [Google Scholar]
  17. Sen, O. L, Wang, B. and Wang, Y., “Impacts of Re-greening the Desertified Lands in Northwestern China : Implications from a Regional Climate Model Experiment”, J. Meterological Soc. Japan, 82, October, 1679–1693 (2004). [CrossRef] [Google Scholar]
  18. Wang, Y., Xie, S-P, Wang, B. and Xu, H., “Large-Scale Atmospheric Forcing by Southeast Pacific Boundary Layer Clouds : A Regional Model Study”, J. Clim., 18, 934–951 (2005). [CrossRef] [Google Scholar]
  19. Khan, S. A., Kumar, S., Hussain, M. Z., & Kalra, N. “Climate Change, Climate Variability and Indian Agriculture: Impacts Vulnerability and Adaptation Strategies. In R. Allan, U. Forstner, & W. Salomons (Eds.), Clim. Change and Crops: Springer (2009). [Google Scholar]
  20. Koshal, A. K. “Changing Current Scenario of Rice-Wheat System in Indo-Gangetic Plain Region of India”, Int. J. of Sci. and Res. Pub.”, 4, 3, 1–13 (2014). [Google Scholar]
  21. Pal, D.K., Bhattacharyya, T. Srivastava, P., Chandran, P. and Ray, S.K. “Soils of the Indo-Gangetic Plains:their historical perspective and management”, Curr. Sci., 96, 9, 1193–1202 (2009). [Google Scholar]
  22. Rupakheti, D., Kang, S., Rupakheti, M., Zhang, Q., Chen, P. and Yin, X., “Long-term trends in the total columns of ozone and its precursor gases derived from satellite measurements during 2004 – 2015 over three different regions in South Asia : Indo-Gangetic Plain, Himalayas and Tibetan Plateau,” Int. J. Remote Sens., 1–21 (2018). [Google Scholar]
  23. Putero, D., Marinoni, A., Bonasoni, P., Calzolari, F., Rupakheti, M. and Cristofanelli, P., “Black Carbon and Ozone Variability at the Kathmandu Valley and at the Southern Himalayas : A Comparison between a „Hot Spot’ and a Downwind High-Altitude Site”, Aero. and Air Qual. Res., 18, 3, 623–635 (2018). [CrossRef] [Google Scholar]
  24. Ali, K., Momin, G. A., Safai, P. D., Chate, D. M., and Rao, P. S. P., “Surface ozone measurements over Himalayan region and Delhi, North India”, J. of Atm. Chem., 33, 2–5 (2018). [Google Scholar]
  25. Saini, H. S., “Climate Change and its Future Impact on the Indo-Gangetic Plain (IGP) Climate Change and its Future Impact on the Indo-Gangetic Plain (IGP)”, Earth Sci. India, 1, 3,138–147 (2016). [Google Scholar]
  26. New, M., Rahiz, M. and Karmacharya, J., “Climate Change in Indo Gangetic Agriculture : Recent Trends, Current Projections, Crop, Climate Suitability, and Prospects for Improved Climate Model Information”,Copenhagen:CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) (2012). [Google Scholar]
  27. Acker, J. G. and Leptoukh, G., “Online Analysis Enhances Use of NASA Earth Science Data”, Eos, Trans. AGU, 88, 2, 14-17 (2007). [CrossRef] [Google Scholar]
  28. Sharma, D., Singh, D. and Kaskaoutis, D. G., “Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India”, Adv. in Meterology, 956814 (2012). [Google Scholar]
  29. Pattnayak, K.C. and Dash, S. K., “Annual cycles of circulation and precipitation over India simulated by a Regional Climate Model”, Vayumandal, (2014). [Google Scholar]
  30. Grell, G. A., “Prognostic Evaluation of Assumptions used by cumulus parameterization”, Mon. Weather Rev., 121, 764–787 (1993). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.