Open Access
Issue
E3S Web Conf.
Volume 108, 2019
Energy and Fuels 2018
Article Number 01019
Number of page(s) 10
Section Energy
DOI https://doi.org/10.1051/e3sconf/201910801019
Published online 05 July 2019
  1. REN21, Renewables 2018 global status report, 2018. doi:978-3-9818911-3-3 [Google Scholar]
  2. M.Z. Jacobson, M.A. Delucchi, Energy Policy. 39, 1154–1169 (2011) [Google Scholar]
  3. M. McPherson, N. Johnson, M. Strubegger, Appl. Energy. 216, 649–661 (2018) [Google Scholar]
  4. C. Acar, I. Dincer, 1.13 Hydrogen Energy, 2018. doi:10.1016/B978-0-12-8095973.00113-9 [Google Scholar]
  5. A. Perna, M. Minutillo et al., Energy Procedia. 101, 1087–1094 (2016) [Google Scholar]
  6. T.A. Adams, J. Nease, et al., Ind. Eng. Chem. Res. 52, 3089–3111 (2013) [Google Scholar]
  7. M.C. Williams, J.P. Strakey, W.A. Surdoval, U.S. Department of Energy’s Solid Oxide Fuel Cells: Technical Advances, 300, 295–300 (2010) [Google Scholar]
  8. A. Burke, L. Carreiro, ECS Trans., 35, 2815–2823 (2011) [Google Scholar]
  9. X. Zhang, S.H. Chan et al., J. Power Sources. 195, 685–702 (2010) [Google Scholar]
  10. N. Minh, ECS Trans., 26, 45–50 (2007) [Google Scholar]
  11. F.P. Nagel, et al., Int. J. Hydrogen Energy. 34, 6809–6825 (2009) [Google Scholar]
  12. A. Weber, E. Ivers-Tiffée, J. Power Sources. 127, 273–283 (2004) [Google Scholar]
  13. A.M. Abdalla, S. Hossain et al., Renew. Sustain. Energy Rev. 82, 353–368 (2018) [CrossRef] [Google Scholar]
  14. A. Brisse, J. Schefold, M. Zahid, Int. J. Hydrogen Energy. 33, 5375–5382 (2008) [Google Scholar]
  15. A. V. Virkar, G. Tao, Int. J. Hydrogen Energy. 40, 5561–5577 (2015) [Google Scholar]
  16. J.B. Hansen, Faraday Discuss. 182, 9–48 (2015) [CrossRef] [PubMed] [Google Scholar]
  17. T. Elmer, M. Worall et al., Renew. Sustain. Energy Rev. 42, 913–931 (2015) [CrossRef] [Google Scholar]
  18. J. Mermelstein, O. Posdziech, Fuel Cells. 17, 562–570 (2017) [CrossRef] [Google Scholar]
  19. M. Gurz, E. Baltacioglu et al., Int. J. Hydrogen Energy. 42, 23334–23346 (2017) [Google Scholar]
  20. A. Buonomano, F. Calise et al., Appl. Energy. 156, 32–85 (2015) [Google Scholar]
  21. O. Posdziech, K. Schwarze, J. Brabandt, Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.05.169 (2018) [Google Scholar]
  22. S. Mukerjee, et al. Solid Oxide Fuel Cell Lifetime and Reliability, (Elsevier Ltd, 2017) [Google Scholar]
  23. T. Ishihara, J. Korean Ceram. Soc. 53, 469–477. (2016) [CrossRef] [Google Scholar]
  24. P. Moçoteguy, A. Brisse, Int. J. Hydrogen Energy. 38, 15887–15902 (2013) [Google Scholar]
  25. J. Richter, P. Holtappels et al., Monatshefte Fur Chemie. 140, 985–999 (2009) [Google Scholar]
  26. K.C. Wincewicz, J.S. Cooper, J. Power Sources. 140, 280–296 (2005) [Google Scholar]
  27. Y. Li, R. Gemmen, X. Liu, J. Power Sources. 195, 3345–3358 (2010) [Google Scholar]
  28. S. Miyoshi, A. Takeshita et al., Solid State Ionics. 285, 202–208 (2016) [Google Scholar]
  29. R. Merkle, J. Maier, Angew. Chemie Int. Ed. 47, 3874–3894 (2008) [CrossRef] [Google Scholar]
  30. Z. Gao, L. V. Mogni et al., Energy Environ. Sci. 9, 1602–1644 (2016) [Google Scholar]
  31. A. Aguadero, D. Pérez-Coll et al., Chem. Mater. 24, 2655–2663 (2012) [Google Scholar]
  32. G. Bin Jung, C.T. Chang et al., Int. J. Hydrogen Energy. 41, 21802–21811 (2016) [Google Scholar]
  33. Y. Tan, N. Duan et al., J. Power Sources. 305, 168–174 (2016) [Google Scholar]
  34. J. Chen, F. Liang et al., Int. J. Hydrogen Energy. 34, 6845–6851 (2009) [Google Scholar]
  35. A. Olszewska, Z. Du et al., J. Mater. Chem. A. 6, 13271–13285 (2018) [CrossRef] [Google Scholar]
  36. A. Tarancón, M. Burriel et al., J. Mater. Chem. 20, 3799–3813 (2010) [Google Scholar]
  37. G. Kim, S. Wang et al., J. Mater. Chem. 17, 2500–2505 (2007) [Google Scholar]
  38. S.Y. Gómez, D. Hotza, Renew. Sustain. Energy Rev. 61, 155–174 (2016) [CrossRef] [Google Scholar]
  39. A. Aguadero, L. Fawcett et al., J. Mater. Sci. 47, 3925–3948 (2012) [Google Scholar]
  40. N. Q. Minh, E.C.S. Transactions, 35, 2897–2904 (2011) [CrossRef] [Google Scholar]
  41. L.G.J. De Haart, I.C. Vinke, E.C.S. Transactions, 35, 187–194 (2011) [CrossRef] [Google Scholar]
  42. J. Schefold, A. Brisse et al., E.C.S. Transaction 35, 2915–2927 (2011) [Google Scholar]
  43. V.N. Nguyen, Q. Fang et al., Int. J. Hydrogen Energy. 38, 4281–4290 (2013) [Google Scholar]
  44. J.A. Schuler, Z. Wuillemin et al., J. Power Sources. 211, 177–183 (2012) [Google Scholar]
  45. M.J. López-Robledo, et al., J. Power Sources. 378, 184–189 (2018) [Google Scholar]
  46. N.A. Baharuddin, A. Muchtar et al., Int. J. Hydrogen Energy. 42, 9149–9155 (2017) [Google Scholar]
  47. S. Yang, Y. Wen et al., Electrochim. Acta. 267, 269–277 (2018) [Google Scholar]
  48. Q. Zhou, Y. Gao et al., Ceram. Int. 41, 639–643 (2014) [Google Scholar]
  49. S. Cho, Y.N. Kim et al., Electrochim. Acta. 62, 147–152 (2012) [Google Scholar]
  50. J. Yoon, S. Cho et al., Adv. Funct. Mater. 19, 3868–3873 (2009) [Google Scholar]
  51. M. Zhi, S. Lee et al., Energy Environ. Sci. 5, 7066–7071 (2012) [Google Scholar]
  52. Y. Chen, Y. Bu et al., Nano Energy. 26, 90–99 (2016) [Google Scholar]
  53. N.T. Hieu, et al., Mater. Sci. Eng. B 177, 205–209 (2012) [CrossRef] [Google Scholar]
  54. A. Enrico, W. Zhang et al., J. Eur. Ceram. Soc. 38, 2677–2686. (2018) [Google Scholar]
  55. F. Li, R. Zeng, L. Jiang, T. Wei, X. Lin, Y. Xu, Y. Huang, J. Mater. 1, 60–67 (2015) [Google Scholar]
  56. F. Wang, W. Li, X. Feng, D. Liu, Y. Zhang, Chem. Sci. 7, 1867–1873 (2016) [CrossRef] [PubMed] [Google Scholar]
  57. J.G. Bednorz, K.A. Müller, Zeitschrift für Physik B 64, 189–193 (1986) [CrossRef] [Google Scholar]
  58. E. Takayama-Muromachi, Phase Transitions. 41, 37–44 (1993) [CrossRef] [Google Scholar]
  59. M.J. Rosseinsky, K. Prassides, Phys. B Condens. Matter. 165-166, 1187–1188 (1990) [CrossRef] [Google Scholar]
  60. M. Reehuis, C. Ulrich, K. Prokeš, et al. Phys. Rev. B. 73, 144513 (2006) [Google Scholar]
  61. Z. Hiroi, M. Takano, Nature. 377, 41–43 (1995) [Google Scholar]
  62. J.F. Bringley, B.A. Scott et al., Phys. Rev. B. 47, 15269–15275 (1993) [Google Scholar]
  63. A. Dwivedi, M.A. Rodriguez, et al., J. Am. Ceram. Soc. 7, 1993–1996 (1993) [Google Scholar]
  64. M. Karppinen, H. Yamauchi, T. Ito, et al., Mater. Sci. Eng. B. 41, 59–62 (1996) [CrossRef] [Google Scholar]
  65. H. Falcón, M.J. Martinez-Lope et al., Appl. Catal. B Environ. 26, 131–142 (2000) [CrossRef] [Google Scholar]
  66. M. Karppinen, H. Yamauchi et al., Phys. C Supercond. Its Appl. 264, 268–274 (1996) [CrossRef] [Google Scholar]
  67. A. Chroneos, R. V. Vovk et al., J. Alloys Compd. 494, 190–195 (2010) [Google Scholar]
  68. P. Ganguly, C. Rao, Mater. Res. Bull. 8, 405–412 (1973) [Google Scholar]
  69. A. Glauche, T. Betz, M. Ise, E.C.S. Transactions, 35, 157–165 (2011) [CrossRef] [Google Scholar]
  70. H.C. Yu, K.Z. Fung, J. Power Sources. 133, 162–168 (2004) [Google Scholar]
  71. N. Trofimenko, M. Kusnezoff, A. Michaelis, E.C.S. Transactions, 35, 315–325 (2011) [CrossRef] [Google Scholar]
  72. M. Zheng, X. Liu, W. Su, J. Alloys Compd. 395, 300–303 (2005) [Google Scholar]
  73. X. Ding, X. Kong et al., Int. J. Hydrogen Energy. 35, 1742–1748 (2010) [Google Scholar]
  74. X. Ding, C. Cui, L. Guo, J. Alloys Compd. 481, 845–850 (2009) [Google Scholar]
  75. S. Duran, J. Tellez et al., Solid State Ionics. 326, 116–123 (2018) [Google Scholar]
  76. M.A. Macias, M. V. Sandoval, et al. Solid State Ionics. 288, 68–75 (2016) [Google Scholar]
  77. Z. Hui, L.I. Qiang, Sci. China Chems. 54, 898–910 (2011) [CrossRef] [Google Scholar]
  78. A.C. Tomkiewicz, M. Tamimi et al., J. Mater. Chem. A. 3, 21864–21874 (2015) [CrossRef] [Google Scholar]
  79. D. Lee, H.N. Lee, Materials (Basel). 10, 1–22 (2017) [Google Scholar]
  80. K. Zheng, et al., Mater. Res. Bull. 47, 4089–4095 (2012) [Google Scholar]
  81. Z. Zhang, Z. Du et al., Solid State Ionics. 317, 26–31 (2018) [Google Scholar]
  82. A. Niemczyk, A. Olszewska et al., Int. J. Hydrogen Energy. 43, 15492–15504 (2018) [Google Scholar]
  83. Y. Shen, H. Zhao et al., Int. J. Hydrogen Energy. 39, 1023–1029 (2014) [Google Scholar]
  84. L.M. Kolchina, N.V. Lyskov et al., RSC Adv. 6, 101029–101037 (2016) [Google Scholar]
  85. L.M. Kolchina, N.V. Lyskov et al., Mater. Chem. Phys. 165, 91–96 (2015) [Google Scholar]
  86. Q. Li, H. Zhao et al., Electrochem. Commun. 9, 1508–1512 (2007) [Google Scholar]
  87. A. Niemczyk, K. Świerczek, B. Dabrowski, European SOFC & SOE Forum 2018 Conference materials http://www.efcf.com/fileadmin/content/proceedingsPoC/Chapter-10_EFCF-2018_Sessions%20B09-B11_PoC.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.