Open Access
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 01012
Number of page(s) 8
Section Advanced HVAC&R&S Technology
Published online 13 August 2019
  1. Martin, H., Low Peclet number particle-to-fluid heat and mass transfer in packed beds. Chemical Engineering Science, 33(7), 913–919 (1978) [Google Scholar]
  2. Nemec, D., & Levec, J. Flow through packed bed reactors: 1. Single-phase flow. Chemical Engineering Science, 60(24), 6947-6957 (2005) [Google Scholar]
  3. Yu, J., Zhang, M., Fan, W., Zhou, Y., Zhao, G.: Study on performance of the ball packed-bed regenerator: experiments and simulation. Appl. Therm. Eng. 22, 641–651 (2002) [Google Scholar]
  4. Toghraie, D., Afrand, M., Zadeh, A. D., & Akbari, H. A., Numerical investigation on the flow and heat transfer of a multi-lobe particle and equivalent spherical particles in a packed bed with considering the wall effects. International Journal of Mechanical Sciences, 138, 350–367 (2018) [CrossRef] [Google Scholar]
  5. Guo, Z., Sun, Z., Zhang, N., Ding, M., & Cao, X., Radial porosity peak at the centerline of packed beds with small tube to particle diameter ratios. Powder Technology, 319, 445–451 (2017) [Google Scholar]
  6. Allen, K. G., Von Backström, T. W., & Kröger, D. G., Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness. Powder technology, 246, 590–600 (2013) [Google Scholar]
  7. Jeschar, R., Druckverlust in MehrkornschuK ttungen aus Kugeln. Archiv Eisenhu (ttenwesen, 35, 91) 108 (1964) [Google Scholar]
  8. De Klerk, A. Voidage variation in packed beds at small column to particle diameter ratio. AIChE journal, 49(8), 2022–2029 (2003). [CrossRef] [Google Scholar]
  9. Choi, Y. S., Kim, S. J., & Kim, D., A semi-empirical correlation for pressure drop in packed beds of spherical particles. Transport in porous media, 75(2), 133–149 (2008) [Google Scholar]
  10. Eisfeld, B., & Schnitzlein, K., The influence of confining walls on the pressure drop in packed beds. Chemical Engineering Science, 56(14), 4321–4329 (2001) [Google Scholar]
  11. Bergman, T. L., Incropera, F. P., DeWitt, D. P., & Lavine, A. S., Fundamentals of heat and mass transfer. John Wiley & Sons (2011) [Google Scholar]
  12. Ergun, S., Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952) [Google Scholar]
  13. Mehta, D., Hawley, M.C., Wall effect in packed columns. Ind. Eng. Chem. Proc. Des. Dev. 8, 280–282 (1969) [CrossRef] [Google Scholar]
  14. Augier, F., Idoux, F., & Delenne, J. Y., Numerical simulations of transfer and transport properties inside packed beds of spherical particles. Chemical Engineering Science, 65(3), 1055–1064 (2010) [Google Scholar]
  15. Guardo, A., Coussirat, M., Larrayoz, M. A., Recasens, F., & Egusquiza, E. Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds. Chemical Engineering Science, 60(6), 1733–1742 (2005) [Google Scholar]
  16. Achenbach, E., Heat and flow characteristics of packed beds. Experimental thermal and fluid science, 10(1), 17–27 (1995) [CrossRef] [Google Scholar]
  17. Gnielinski, V., Gleichungen zur Berechnung des Wirme- und Stoffaustausches in durchstrmten ruhenden Kugelschiittungen bei mittleren und grossen Pecletzahlen, Verfahrenstechnik 12(6), 63-366 (1978) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.