Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 03059
Number of page(s) 4
Section High Energy Performance and Sustainable Buildings
DOI https://doi.org/10.1051/e3sconf/201911103059
Published online 13 August 2019
  1. Pérez-Lombard, L., Ortiz, J. and Pout, C., 2008. A review on buildings energy consumption information. Energy and buildings, 40 (3), pp.394–398. [Google Scholar]
  2. Semsar-Kazerooni, E.; Yazdanpanah, M.J.; Lucas, C. (2008) Nonlinear Control and Disturbance Decoupling of HVAC Systems Using Feedback Linearization and Backstepping With Load Estimation, in Control Systems Technology, IEEE Transactions, 16 (5), 918–929. [Google Scholar]
  3. Singhal A., Salsbury T. I. (2007) Characterization and cancellation of static nonlinearity in HVAC systems, ASHRAE Transactions, 113 (1). [Google Scholar]
  4. Huang G. Wang S., Xu X. (2009) Robust Model Predictive Control of VAV Air-Handling Units Concerning Uncertainties and Constraints, HVAC&R Research, 16 (1), 15–33. [Google Scholar]
  5. Liao, Y., Sun, Y. and Huang, G., 2015. Robustness analysis of chiller sequencing control. Energy Conversion and Management, 103, pp.180–190. [Google Scholar]
  6. Maciejowski J. M. (2002) Predictive control with constraints. Practice hall. [Google Scholar]
  7. Huang G. (2011) Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity, Control Engineering Practice 19, 700–710. [Google Scholar]
  8. Huang G. Wang S.W., Xu X.H., (2009) A robust MPC strategy for improving control performance of air conditioning systems, Energy Conversion and Management 50, 2650–2658. [Google Scholar]
  9. Clark D.R., in U.S.D. Commerce, N.B.o. Standarts, N.E.o. Laboratory, C. Technology, B.E, f.B, Division (Eds.), (1985) HVACSIM+ Building Systems and Equipment Simulation Program Reference Manual. Gaithersburg, MD 20899. [Google Scholar]
  10. Bourdouxhe J.P., Groodent M., LeBrun J., (1998) Reference Guide for Dynamic Models of HVAC Equipment: American Society of Heating, Refrigerating and Air Conditioning Engineers Incorporated. [Google Scholar]
  11. Cristea, V.M., Letiţia, T.O.M.A. and AGACHI, P.Ş., 2007. Simulation and Model Predictive Control of the Fluid Catalytic Cracking Unit Using Artificial Neural Networks. Revue Roumaine de Chimie, 52 (12), pp.1157–1166. [Google Scholar]
  12. Afram, A. and Janabi-Sharifi, F., 2014. Theory and applications of HVAC control systems–A review of model predictive control (MPC). Building and Environment, 72, pp.343–355. [Google Scholar]
  13. Pisoni, E.; Farina, M.; Carnevale, C.; Piroddi, L. Forecasting peak air pollution levels using NARX models. Eng. Appl. Artif. Intell. 2009, 22, 593–602. [Google Scholar]
  14. Ruiz, L.G.B.; Cuéllar, M.P.; Calvo-Flores, M.D.; Jiménez, M.D.C.P. An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings. Energies 2016, 9, 684. [Google Scholar]
  15. Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T. and Alkon, D.L., 1988. Accelerating the convergence of the back-propagation method. Biological cybernetics, 59(4-5), pp.257–263. [Google Scholar]
  16. Hagan, M.T. and Menhaj, M.B., 1994. Training feedforward networks with the Marquardt algorithm. IEEE transactions on Neural Networks, 5 (6), pp.989–993. [Google Scholar]
  17. Asad, H.S., Yuen, R.K.K. and Huang, G., 2017. Multiplexed real-time optimization of HVAC systems with enhanced control stability. Applied Energy, 187, pp.640–651 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.