Open Access
Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 04050 | |
Number of page(s) | 8 | |
Section | High Energy Performance and Sustainable Buildings, Simulation models and predictive tools for the buildings HVAC, IEQ and energy | |
DOI | https://doi.org/10.1051/e3sconf/201911104050 | |
Published online | 13 August 2019 |
- Clean Energy for All Europeans (European Commission, 2016) [Google Scholar]
- Annual Energy Outlook (2017) with projection to 2050 (U.S. Energy Information Administration, 2017) [Google Scholar]
- Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 (Official Journal of the European Union, 2018) [Google Scholar]
- Joel A. E. Andersson, Joris Gillis et al., CasADi -- A software framework for nonlinear optimization and optimal control, Mathematical Programming Computation (In Press, 2018) [Google Scholar]
- Tomáš Bäumelt, Distributed building identification (Czech Technical University in Prague, 2016) [Google Scholar]
- Venkatesh Chinde, Modeling and control of complex building energy systems (Iowa State University, 2018) [Google Scholar]
- Jiří Cígler, Model predictive control for buildings (Czech Technical University in Prague, 2013) [Google Scholar]
- Jiří Cígler, Dimitrios Gyalistras et al., Beyond theory: the challenge of implementing model predictive control in buildings, in: Proceedings of 11th Rehva world congress, Clima, (2013) [Google Scholar]
- Jiří Dostál, Lukáš Ferkl, Model predictive control of climatic chamber with on-off actuators, in: IFAC Proceedings Volumes (IFAC-PapersOnline), 4423-4428 (2014) 10.3182/20140824-6-ZA-1003.01571 [Google Scholar]
- Jiří Dostál, Vladimír Havlena, Modeling, optimization and analysis of hydronic networks with decentralized pumping, in: CACS 2014-2014 International Automatic Control Conference, Conference Digest, 269-274 (2014) 10.1109/CACS.2014.7097200 [Google Scholar]
- L. Grüne, J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms (Springer London, 2011) [Google Scholar]
- Ivo Herman, Štefan Knotek et al., Stability of hydronic networks with independent zone controllers, IEEE Trans. Control Syst. Technol. (2017) 10.1109/TCST.2017.2753179 [Google Scholar]
- G. Nellis, S. Klein, Heat Transfer (Cambridge University Press, 2009) [Google Scholar]
- L. Perez-Lombard, J. Ortiz et al., A review on buildings energy consumption information, Energy Build. 40, (2008) [Google Scholar]
- Samuel Prívara, Jiří Cígler et al., Building modeling as a crucial part for building predictive control, Energy Build. 56, 8-22, (2013) 10.1016/j.enbuild.2012.10.024 [Google Scholar]
- Samuel Prívara, Jan Široký et al., Model predictive control of a building heating system: The first experience, Energy Build. 43, 564-572, (2011) 10.1016/j.enbuild.2010.10.022 [Google Scholar]
- Gianluca Serale, Massimo Fiorentini et al., Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities, Energies 11, 631, (2018) 10.3390/en11030631 [Google Scholar]
- David Sturzenegger, Model predictive building climate control: Steps towards practice (ETH Zurich, 2014) [Google Scholar]
- Frank P. Incropera, David P. DeWitt. et al., Principles of Heat and Mass Transfer (John Wiley & Sons, 2012) [Google Scholar]
- Tomáš Bäumelt, Jiří Dostál, Distributed agent-based building model calibration, to be published in Energy & Buildings (2019) [Google Scholar]
- Taco, Inc., Green municipal building uses single pipe hydronic system, PM Enginner Feb., 54, (2005) [Google Scholar]
- Greg Cunniff, Brett Zebra, Single-pipe systems for commercial applications, HPAC Engineering Oct., 42-46, (2006) [Google Scholar]
- Taco, Inc., Taco employs the latest technologies for LEED certification of its building addition, ASHRAE Journal (2009) [Google Scholar]
- John Siegenthaler, Modern Hydronic Heating, 3rd Edition (Cengage Learning, Inc., 2011) [Google Scholar]
- Jiří Dostál, Václav Prajzner et al., Convection Oriented Heat Exchanger Model - Identification, in: Proceedings of the 12th REHVA World Congress: volume 9, (2016) [Google Scholar]
- Ondřej Zlevor, Jiří Dostál et al., Demand-oriented hydronic heating system and an active one-pipe system design tool, in: Proceedings of the 13th REHVA HVAC World Congress, (to be published, 2019) [Google Scholar]
- Kirk Mescher, One-pipe geothermal design: Simplified GCHP system, ASHRAE Journal Oct., 24-40, (2009) [Google Scholar]
- , Einrohrheizungen: Neues System für die Sanierung, HeizungsJournal 11, (2016) [Google Scholar]
- Zertifikat: Energieeinsparung durch dezentrales Pumpensystem Geniax (TÜV Rheinland, 2010) [Google Scholar]
- Heat exchanger control and diagnostic apparatus (WO2016202316 (A1), 2016) [Google Scholar]
- B. Lehmann, D. Gyalistras et al., Intermediate complexity model for Model Predictive Control of Integrated Room Automation, Energy Build. 58, 250-262, (2013) 10.1016/j.enbuild.2012.12.007 [Google Scholar]
- David Sturzenegger, Dimitrios Gyalistras et al., Semi-automated modular modeling of buildings for model predictive control, in: Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings - BuildSys ‘12, (2012) 10.1145/2422531.2422550 [Google Scholar]
- Jan Široký, Frauke Oldewurtel et al., Experimental analysis of model predictive control for an energy efficient building heating system, Appl. Energy 88, 3079-3087, (2011) 10.1016/j.apenergy.2011.03.009 [Google Scholar]
- M. Urban, M. Bejček, P. Wolf, A. Vodička, Koncept administrativní budovy jako budovy s téměř nulovou spotřebou energie, Vytápění, větrání, instalace, 26 (1), 30-36, (2017) ISSN 1210-1389 [Google Scholar]
- EnergyPlus Co-simulation Toolbox (github.com/UCEEB/EnergyPlus-co-simulation-toolbox, 2018) [Google Scholar]
- University Centre For Energy Efficient Buildings, CTU in Prague (uceeb.cz, 2018) [Google Scholar]
- Onepipe Hydronic Design Tool (github.com/UCEEB/Onepipe-Hydronic-Design-Tool, 2018) [Google Scholar]
- Gurobi optimizer (Gurobi Optimization, LLC., 2018) [Google Scholar]
- J. Löfberg, YALMIP : A Toolbox for Modeling and Optimization in MATLAB, in: In Proceedings of the CACSD Conference, (2004) [Google Scholar]
- L. T. Biegler, Nonlinear programming: Concepts, algorithms, and applications to chemical processes (Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 2010) [Google Scholar]
- Jan Předota, Model predictive control for buildings with one-pipe hydronic heating (Czech Technical University in Prague, 2018) [Google Scholar]
- Andreas Wächter, Lorenz T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program. 106, 25-57, (2006) 10.1007/s10107-004-0559-y [Google Scholar]
- Jiří Dostál, Decentralized control of hydronic building systems (thesis study) (Czech Technical University in Prague, 2015) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.