Open Access
Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 04054 | |
Number of page(s) | 7 | |
Section | High Energy Performance and Sustainable Buildings, Simulation models and predictive tools for the buildings HVAC, IEQ and energy | |
DOI | https://doi.org/10.1051/e3sconf/201911104054 | |
Published online | 13 August 2019 |
- J. Merrit, J. Reiley, Preventive Conservation for Historic House Museums, p. 74, (Altamira Press, 2010) [Google Scholar]
- S. Park, Heating Ventilating and Cooling Historic Buildings, The Preservation of Historic Architecture, p. 261, (The Lyons Press, 2004) [Google Scholar]
- CEN, EN 15757:2010, Conservation of cultural property, (Beuth, 2010) [Google Scholar]
- M. Mecklenburg, Determining the Acceptable Ranges of Relative Humidity and Temperature in Museums and Galleries, p. 10, (Smithsonian Libraries, 2007) [Google Scholar]
- International Association for Science and Technology of Building Maintenance and the Preservation of Monuments (WTA), Climate and climate stability in historic buildings, Guideline 6-12, (2010) [Google Scholar]
- W. McCulloch, W. Pitts, Bulletin of Mathematical Biophysics, Vol. 5, A logical calculus of the ideas immanent in nervous activity, p. 115-133, (Kluwer, 1943) [Google Scholar]
- R. Kruse, et. Al., Computational Intelligence, p. 62, (Springer, 2015) [Google Scholar]
- P. Pardalos, H. Romeijn, Handbook of Global Optimization, p. 373, (Springer, 2002) [Google Scholar]
- F. Hofmann, R. Mikut, A. Kroll, et. Al., Computational Intelligence: State-of-the-Art Methoden und Benchmarkprobleme, (KIT Scientific Publishing 2012) [Google Scholar]
- K. Gnana Sheela, S. N. Deepa, Review on Methods to Fix Number of Hidden Neurons in Neural Networks, Mathematical Problems in Engineering, Article ID 425740, (2013) [Google Scholar]
- K. Hornik, Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, Volume 4, Issue 2, p. 251, (1991) [CrossRef] [MathSciNet] [Google Scholar]
- K. Stanley, R. Miikkulainen, Evolving Neural Networks through Augmenting Topologies, Evolutionary Computation, Volume 10 Issue 2, p. 99 – 127, (2002) [CrossRef] [PubMed] [Google Scholar]
- S. Harasty, S. Lambeck, A. Cavaterra, Model Predictive Control for Preventive Conservation using Artificial Neural Networks, CLIMA 2016 - proceedings of the 12th REHVA World Congress: volume 8, ID 450 (2016) [Google Scholar]
- M. Reick, M. J. Setzer, Untersuchung des Sorptionsverhaltens wohnraumumschließender Materialien, DFG Forschungsschwerpunkt-programm Bauphysik der Außenwände, p. 363-374, (Fraunhofer IRB Verlag, 2000) [Google Scholar]
- S. Harasty, S. Lambeck, T. Aissa, Einsatz künstlicher neuronaler Netze zur Modellierung unbekannter Störgrößen in der Raumklimatisierung, 24 CI Workshop Proceedings, p. 168, (2014) [Google Scholar]
- D. Luenberger, IEEE Transaction on Military Electronics. Vol. 8, p. 74–80 (1964) [Google Scholar]
- de.mathworks.com/help/deeplearning/index.html, (2018) [Google Scholar]
- A. Cavaterra, A. Böttcher, S. Lambeck, CLIMA 2019 proceedings of the 13th REHVA World Congress, (to be puplished) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.