Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 05006
Number of page(s) 8
Section Information and Communication Technologies (ICT) for the Intelligent Building Management
DOI https://doi.org/10.1051/e3sconf/201911105006
Published online 13 August 2019
  1. Prasad DK, Samuels R (2005) Global Warming and the Built Environment. E & FN Spon, London, UK [Google Scholar]
  2. Kim S, Cho B (2013) Influence of VOC and formaldehyde emission from tile adhesives on their indoor concentrations in buildings. Journal of Adhesion Science and Technology 27(5-6): 699-709. doi: 10.1080/01694243.2012.693279 [Google Scholar]
  3. Usha Satish, Mark J. Mendell, Krishnamurthy Shekhar, Toshifumi Hotchi, Douglas Sullivan, Siegfried Streufert, William J. Fisk (2012) Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environ Health Perspectives 120 (12): 1671–1677. [Google Scholar]
  4. European Parliament and European Council (2010) Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 2010(L 153): 13-35 [Google Scholar]
  5. Haas R, Biermayr P (2000) The rebound effect for space heating Empirical evidence from Austria. Energy Policy(6-7): 403-410 [CrossRef] [Google Scholar]
  6. Haas R, Auer H, Biermayr P (1998) The impact of consumer behavior on residential energy demand for space heating. Energy Policy(27): 195–205 [Google Scholar]
  7. Calì D, Osterhage T, Streblow R et al. (2016) Energy performance gap in refurbished German dwellings: Lessonlearned from a field test. Energy and buildings (127): 1-13 [Google Scholar]
  8. Galvin R (2014) Making the ‘rebound effect’ more useful for performance evaluation of thermal retrofits of existing homes: Defining the ‘energy savings deficit’ and the ‘energy performance gap’. Energy and buildings 69: 515–524. doi: 10.1016/j.enbuild.2013.11.004 [Google Scholar]
  9. Hens H (2010) Energy efficient retrofit of an end of the row house: Confronting predictions with long-term measurements. Energy and buildings 42 (10): 1939–1947. doi: 10.1016/j.enbuild.2010.05.030 [Google Scholar]
  10. Calì D (2016) Occupants’ Behavior and its Impact upon the Energy Performance of Buildings. Dissertation, Rheinisch-Westfälische Technische Hochschule, RWTH AACHEN UNIVERSITY [Google Scholar]
  11. Calì D, Osterhage T, Müller D (2011) Retrofit Solutions for Residential Buildings. International Journal of Sustainable Building Technology and Urban Development 2 (2): 131–136. doi: 10.5390/SUSB.2011.2.2.131 [CrossRef] [Google Scholar]
  12. Calì D, Osterhage T, Müller D (2011) Rebound effect related to retrofit solutions for residential housing : monitoring data from a field test. Proceedings of SB11 Helsinki World Sustainable Building Conference: 104–113 [Google Scholar]
  13. Erhorn H (2007) Bedarf - Verbrauch: Ein Reizthema ohne Ende oder die Chance für sachliche Energieberatung? http://www.buildup.eu/publications/1810. Accessed 16 May 2015 [Google Scholar]
  14. Haldi F, Calì D, Andersen RK et al. (2017) Modelling diversity in building occupant behaviour: A novel statistical approach. Journal of Building Performance Simulation 10(5-6): 1–18. doi: 10.1080/19401493.2016.1269245 [Google Scholar]
  15. Dall’O’ G, Sarto L, Galante A et al. (2012) Comparison between predicted and actual energy performance for winter heating in high-performance residential buildings in the Lombardy region (Italy). Energy and buildings 47: 247–253. doi: 10.1016/j.enbuild.2011.11.046 [Google Scholar]
  16. Fabi V, Corgnati SP, Filippi M et al. (2011) Effect of occupant behaviour related influencing factors on final energy end uses in buildings [Google Scholar]
  17. Polinder H, Schweiker M, van der Aa, Ad et al. (2013) Occupant behavior and modeling: Separate Document Volume II - Total energy use in buildings - analysis and evaluation methods - Final Report Annex 53. International Energy Agency - Institute for Building Environment and Energy Conservation [Google Scholar]
  18. Menezes AC, Cripps A, Bouchlaghem D et al. (2012) Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap. Applied Energy 97: 355–364. doi: 10.1016/j.apenergy.2011.11.075 [Google Scholar]
  19. S. K. Chaurasiya, Monitoring and controlling indoor climate and energy consumption, Master’s thesis, Technical University of Denmark, DTU Compute (Aug. 2018) [Google Scholar]
  20. M. L. Østrup, W. W. Hartmann, K. Hu, A. N. A. Nguyen, Monitoring indoor climate in buildings: An extensible and flexible platform for collecting data from sensors (Jun. 2018) [Google Scholar]
  21. S. Lex, D. Cali, M. Koed Rasmussen, P. Bacher, M. Bachalarz, H. Madsen, A cross-disciplinary path to healthy and energy efficient buildings, technological Forecasting and Social Change doi: 10.1016/j.techfore.2018.07.023 [Google Scholar]
  22. H. Madsen, P. Bacher, G. Bauwens, A.-H. Deconinck, G. Reynders, S. Roels, E. Himpe, G. Lethe, Thermal Performance Characterization using Time Series Data - IEA EBC Annex 58 Guidelines, TechnicalUniversity of Denmark (DTU), 2015. [Google Scholar]
  23. J. Liisberg, J. Møller, H. Bloem, J. Cipriano, G. Mor, H. Madsen, Hidden markov models for indirect classification of occupant behaviour, Sustainable Cities and Society 27 (2016) 83–98. doi: 10.1016/j. scs.2016.07.001. [Google Scholar]
  24. P. Bacher, H. Madsen, Identifying suitable models for the heat dynamics of buildings, Energy & Buildings 43 (7) (2011) 1511–1522.doi:10.1016/j.enbuild.2011.02.005 [Google Scholar]
  25. P. Bacher, H. Madsen, H. A. Nielsen, B. Perers, Short-term heat load forecasting for single family houses, Energy and Buildings 65 (0) (2013) 101–112. doi: http://dx.doi.org/10.1016/j.enbuild.2013.04.022 [Google Scholar]
  26. R. Halvgaard, P. Bacher, B. Perers, E. Andersen, S. Furbo, J. B. Jørgensen, N. K. Poulsen, H. Madsen, Model predictive control for a smart solar tank based on weather and consumption forecasts, Energy Procedia 30 (2012) 270–278. doi: 10.1016/j.egypro.2012.11.03 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.