Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 05013
Number of page(s) 7
Section Information and Communication Technologies (ICT) for the Intelligent Building Management
DOI https://doi.org/10.1051/e3sconf/201911105013
Published online 13 August 2019
  1. L. Gynther, B. Lappillone, and K. Pollier, “Energy efficiency trends and policies in the household and tertiary sectors. An analysis based on the ODYSSEE and MURE databases,” no. June, p. 97, 2015. [Online]. Available: http://www.odyssee-mure.eu/publications/br/energy-efficiencytrends- policies-buildings.pdf [Google Scholar]
  2. X. Cao, X. Dai, and J. Liu, “Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade,” Energy and Buildings, vol. 128, pp. 198–213, 2016. [Google Scholar]
  3. P. H. Shaikh, N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, and T. Ibrahim, “A review on optimized control systems for building energy and comfort management of smart sustainable buildings”, Renewable and Sustainable Energy Reviews, vol. 34, pp. 409–429, 2014. [Google Scholar]
  4. A. I. Dounis and C. Caraiscos, “Advanced control systems engineering for energy and comfort management in a building environment- A review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6-7, pp. 1246–1261, 2009. [CrossRef] [Google Scholar]
  5. R. Sallent Cuadrado, “Return temperature influence of a district heating network on the CHP plant production costs,” Ph.D. dissertation, 2009. [Online]. Available: http://hig.divaportal. org/smash/get/diva2:228450/FULLTEXT01 [Google Scholar]
  6. S. Pr´ıvara, J. ˇSirok´y, L. Ferkl, and J. Cigler, “Model predictive control of a building heating system: The first experience,” Energy and Buildings, vol. 43, no. 2-3, pp. 564–572, 2011. [Google Scholar]
  7. J. ˇSirok´y, F. Oldewurtel, J. Cigler, and S. Pr´ıvara, “Experimental analysis of model predictive control for an energy efficient building heating system,” Applied Energy, vol. 88, no. 9, pp. 3079–3087, 2011. [Google Scholar]
  8. A. Afram, F. Janabi-Sharifi, A. S. Fung, and K. Raahemifar, “Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system”, Energy and Buildings, vol. 141, pp. 96–113, 2017. [Google Scholar]
  9. J. Cigler and S. Pr´ıvara, “Subspace identification and model predictive control for buildings,” 2010, pp. 750–755. [Google Scholar]
  10. D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel, “Reinforcement learning versus model predictive control: A comparison on a power system problem,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 2, pp. 517–529, 2009. [CrossRef] [Google Scholar]
  11. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van Den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017. [CrossRef] [PubMed] [Google Scholar]
  12. S. Liu and G. P. Henze, “Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory: Part 1. Theoretical foundation,” Energy and Buildings, vol. 38, no. 2, pp. 142–147, 2006. [Google Scholar]
  13. D. Urieli and P. Stone, “A Learning Agent for Heat-Pump Thermostat Control,” no. May, 2013, pp. 1093–1100. [Online]. Available: http://dl.acm.org/citation.cfm?id=2484920.2485092 [Google Scholar]
  14. F. Ruelens, S. Iacovella, B. J. Claessens, and R. Belmans, “Learning agent for a heat-pump thermostat with a set-back strategy using model-free reinforcement learning,” Energies, vol. 8, no. 8, pp. 8300–8318, 2015. [Google Scholar]
  15. D. Ormoneit and A°. Sen, “Kernel-based reinforcement learning,” Machine Learning, vol. 49, no. 2-3, pp. 161–178, 2002. [Google Scholar]
  16. R. Sutton and A. Barto, “Reinforcement Learning: An Introduction,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 1054–1054, 1998. [Online]. Available: http://ieeexplore.ieee.org/document/712192/ [Google Scholar]
  17. HOFOR, “District Heating Prices.” [Online]. Available: http://www.hofor.dk/fjernvarme/prisen-paa-fjernvarme-2017/ [Google Scholar]
  18. C. J. C. H. Watkins, “Learning From Delayed Rewards,” Ph.D. thesis, Cambridge University, 1989. [Google Scholar]
  19. C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4, pp. 279–292, 1992.[Online]. Available: http://link.springer.com/10.1007/BF00992698 [Google Scholar]
  20. W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality: Second Edition, 2011. [Google Scholar]
  21. M. Wetter, M. Bonvini, T. Nouidui, W. Tian, and W. Zuo, “Modelica buildings library 2.0,” 14th International Conference of IBPSA - Building Simulation 2015, BS 2015, Conference Proceedings, vol. 7, pp. 253–270, 2015. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.