Open Access
E3S Web Conf.
Volume 114, 2019
International Conference of Young Scientists “Energy Systems Research 2019”
Article Number 07005
Number of page(s) 6
Section Thermodynamics
Published online 04 September 2019
  1. Filippov S. P., Dil’man M. D., Ionov M. S. Demand of the power industry of Russia for gas turbines: the current state and prospects. Thermal Engineering, 64 (11), (2017), 829–840. [CrossRef] [Google Scholar]
  2. Gas Turbine World 2012 GTW Handbook // Pequot Publication, Volume 29. (2012). 63 pp. [Google Scholar]
  3. Modern gas turbine systems. Eds. P. Jansohn, Woodhead Publishing, (2013) 842 p. ISBN 978-1-84569-728-0. [Google Scholar]
  4. Najjar Y., Zaamout M.S. Performance analysis of gas turbine air-bottoming combined system. Energy Conversion Management, 37 (4), (1996) pp. 399-403. [CrossRef] [Google Scholar]
  5. Ghazikhani M, Passandideh-Fard M, Mousavi M. Two new high-performance cycles for a gas turbine with air bottoming. Energy, (2011). 36:294e304. [CrossRef] [Google Scholar]
  6. Ghazikhani M, Khazaee I, Abdekhodaie E. Exergy analysis of gas turbine with air bottoming cycle. Energy (2014); 72:599e607. [CrossRef] [Google Scholar]
  7. Chmielniak T, Czaja D, Lepszy S, Stepczynska-Drygas K. Thermodynamic and economic comparative analysis of air and steam bottoming cycle. Energy (2015); 92:189e96. [CrossRef] [Google Scholar]
  8. Alklaibi A.M., Khan M.N., Khan W.A. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107, (2016). pp. 603–611. [CrossRef] [Google Scholar]
  9. Alklaibi A.M. Utilization of exhaust gases heat from the gas turbine with air bottoming combined cycle. Energy, 133, (2017). pp. 1108–1120. [CrossRef] [Google Scholar]
  10. Saghafifar M., Gadalla M. A critical assessment of thermo‐economic analyses of different air bottoming cycles for waste heat recovery. International Journal of Energy Research, 43 (4), 1315–1341. (2019). [CrossRef] [Google Scholar]
  11. Thermal schemes modeler. Software. URL: Accessed: June 10, 2019. [Google Scholar]
  12. Kler A. M., Zakharov Y. B., Potanina Y. M. Coordinated optimization of the parameters of the cooled gas-turbine flow path and the parameters of gas-turbine cycles and combined-cycle power plants. Thermophysics and Aeromechanics, 21 (3), 383–392. (2014). [CrossRef] [Google Scholar]
  13. Kler A.M., Potanina Yu.M., and Maksimov A.S. Accounting for the variable nature of heat loads in optimizing cogeneration combined heat and power plants. Thermal Engineering, Vol. 59, No. 7, (2012). P. 550−556. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.