Open Access
Issue
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
Article Number 01008
Number of page(s) 4
Section Energy Engineering, Materials and Technology
DOI https://doi.org/10.1051/e3sconf/201911801008
Published online 04 October 2019
  1. Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, G. Li, (2015). Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods. Energy, 90, 1931-1948. [CrossRef] [Google Scholar]
  2. X.S. Li, C.G. Xu, Y. Zhang, X.K. Ruan, G. (2016). Investigation into gas production from natural gas hydrate: A review. Applied Energy, 172, 286-322. [Google Scholar]
  3. K.U. Heeschen, S. Abendroth, M. Priegnitz, E. Spangenberg, J. Thaler, J.M. Schicks, (2016). Gas production from methane hydrate: A laboratory simulation of the multistage depressurization test in Mallik, Northwest Territories, Canada. Energy & Fuels, 30 (8), 6210-6219. [CrossRef] [Google Scholar]
  4. S. Zhou, J. Zhao, Q. Li, W. J. Chen, (2018). Review on natural gas hydrate in 2017. Science & Technology Review 36 (1), 83-90. [Google Scholar]
  5. W. Wei, J.H. Zhang, R.Z. Yu, B.B. Lin, L.Q. Chen, Y. Peng, (2016). Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations. Journal of Natural Gas Science and Engineering, 36, 760-772. [Google Scholar]
  6. Z. Su, L. Huang, N. Wu, S. (2010). Evaluation of gas production potential from marine gas hydrate deposits in Shenhu area of South China Sea. Energy & Fuels, 24 (11), 6018-6033. [CrossRef] [Google Scholar]
  7. Y. Bai, Q. Li, X. Li, & Y. Du, (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51 (8), 1272. [CrossRef] [Google Scholar]
  8. J. Zhao, Z. Zhu, Y. Song, W. Liu, (2016). Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method. Energy conversion and management, 108, 439-445. [Google Scholar]
  9. Y. Konno, Y. Masuda, K. Akamine, (2016). Influence of reservoir permeability on methane hydrate dissociation by depressurization. International Journal of Heat and Mass Transfer, 103, 265-276. [Google Scholar]
  10. J. Zhao, Z. Fan, H. Dong, Z. Yang, Y. Song, (2016). Influence of reservoir permeability on methane hydrate dissociation by depressurization. International Journal of Heat and Mass Transfer, 103, 265-276. [Google Scholar]
  11. M. Terzariol, G. Goldsztein, J.C. Santamarina, (2017). Maximum recoverable gas from hydrate bearing sediments by depressurization. Energy, 141, 1622-1628. [CrossRef] [Google Scholar]
  12. C. Haligva, P. Linga, J.A.P. Ripmeester, (2010). Numerical simulation for laboratory-scale methane hydrate dissociation by depressurization. Energy Conversion and Management, 51 (10), 1883-1890. [Google Scholar]
  13. H. Liang, Y. Song, Y. Chen, (2011). The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea. Journal of petroleum science and engineering, 77 (1), 49-68. [CrossRef] [Google Scholar]
  14. X. Jiang, S. Li, L. Zhang, (2012). Sensitivity analysis of gas production from Class I hydrate reservoir by depressurization. Energy, 39 (1), 281-285. [CrossRef] [Google Scholar]
  15. G. Li, G.J. Moridis, K. Zhang, X.S. Li, Effect of thermal stimulation on gas production from hydrate deposits in Shenhu area of the South China Sea. Science China Earth Sciences, 56 (4), 601-610. [Google Scholar]
  16. J.F. Li, J.L. Ye, X.W. H.J, Qin, (2018). The first offshore natural gas hydrate production test in South China Sea. China Geology, 1 (1), 5-16. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.