Open Access
Issue |
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
|
|
---|---|---|
Article Number | 01032 | |
Number of page(s) | 8 | |
Section | Energy Engineering, Materials and Technology | |
DOI | https://doi.org/10.1051/e3sconf/201911801032 | |
Published online | 04 October 2019 |
- V.B. Agbor, N. Cicek, R. Sparling, A. Berlin, D.B. Levin. Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29 : 675–685 (2011) [CrossRef] [PubMed] [Google Scholar]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater, Washington DC, USA (2012) [Google Scholar]
- S. Aydin. Enhancement of microbial diversity and methane yield by bacterial bioaugmentation through the anaerobic digestion of Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 100 : 5631–5637 (2016) [CrossRef] [PubMed] [Google Scholar]
- T. Bond, M.R. Templeton. History and future of domestic biogas plants in the developing world. Energy Sustainable Dev. 15 : 347–354 (2011). [Google Scholar]
- E. Bruni, A.P. Jensen, I. Angelidaki. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour. Technol. 101: 8713–8717 (2010) [Google Scholar]
- M. Cater, L. Fanedl, S. Malovrh, R.M. Logar. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresour. Technol. 186 : 261–269 (2015) [Google Scholar]
- A.K. Chandel, O.V. Singh. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. Appl. Microbiol. Biotechnol. 89 (5): 1289–1303 (2011) [CrossRef] [PubMed] [Google Scholar]
- Y. Hu, Y.Z. Pang, H.R. Yuan, D.X. Zou, Y.P. Liu, B.N. Zhu, M.J. Chufo, X.J. Li. Promoting anaerobic biogasification of corn stover through biological pretreatment by liquid fraction of digestate (LFD). Bioresour. Technol. 175: 167-173 (2015) [Google Scholar]
- B.B. Hua, J.L. Dai, B. Liu, H. Zhang, X.F. Yuan, X.F. Wang, Z.J. Cui. Pretreatment of non-sterile, rotted silage maize straw by the microbial community MC1 increases biogas production. Bioresour. Technol. 216: 699-705 (2016) [Google Scholar]
- Q.X. Li, W.T. Ng, J.C. Wu. Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb. Cell. Fact. 13: 157-165 (2014) [CrossRef] [PubMed] [Google Scholar]
- J. Lizasoain, M. Rincon, F. Theuretzbacher, R. Enguidanos, P.J. Nielsen, A. Potthast, T. Zweckmair, A. Gronauer, A. Bauer. Biogas production from reed biomass: Effect of pretreatment using different steam explosion conditions. Biomass Bioenerg. 95: 84-91 (2016) [CrossRef] [Google Scholar]
- A. Martin-Ryals, L. Schideman, P. Li, H. Wilkinson, R. Wagner. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresour. Technol. 189, 62–70 (2015) [Google Scholar]
- A.M. Mustafa, T.G. Poulsen, K.C. Sheng. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 180: 661-671 (2016) [Google Scholar]
- S. Nanda, J. Mohammad, S.N. Reddy, J.A. Kozinski, A.K. Dalai. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefin. 4: 157–191 (2014) [Google Scholar]
- National Renewable Energy Laboratory, Inc. Standard procedures for biomass compositional analysis [EB/OL]. [2015-7-11]. http://www.nrel.gov/biomass/analytical_procedures.html. [Google Scholar]
- C. Oppert, W.E. Klingeman, J.D. Willis, B. Oppert, J.L. Jurat-Fuentes. Prospecting for cellulolytic activity in insect digestive fluids. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 155: 145-154 (2010) [CrossRef] [Google Scholar]
- K. Poszytek, M. Clezkowska, A. Sklodowska, L. Drewniak. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production. Front. Microbiol. 7: 1-11 (2016) [CrossRef] [PubMed] [Google Scholar]
- E. Rouches, I. Herpoël-Gimbert, J.P. Steyer, H. Carrere. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renew. Sust. Energ. Rev. 59: 179-198 (2016) [CrossRef] [Google Scholar]
- W. Shi, S.Y. Ding, J.S. Yuan. Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources. BioEnergy Res. 4 (1): 1-10 (2011) [Google Scholar]
- Y. Stolze, M. Zakrzewski, I. Maus, F. Eikmeyer, S. Jaenicke, N. Rottmann, C. Siebner, A. Pühler, A. Schlüter. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol. Biofuels 8: 14 (2015) [Google Scholar]
- J.R. Town, T.J. Dumonceaux. Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters. Appl. Microbiol. Biotechnol. 100: 1009–1017 (2016) [CrossRef] [PubMed] [Google Scholar]
- J.S. van Dyk, B.I. Pletschke. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458–1480 (2012) [CrossRef] [PubMed] [Google Scholar]
- S.J. van Kuijk, A.S. Sonnenberg, J.J. Baars, W.H. Hendriks, J.W. Cone. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol. Adv. 33: 191–202 (2015) [CrossRef] [PubMed] [Google Scholar]
- J.A. Veen, L.S. Overbeek, J.D. Elsas. Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61: 121–135 (1997) [PubMed] [Google Scholar]
- W.D. Wang, L. Yan, Cui, Z.J., Y.M. Gao, Y.J. Wang, R.Y. Jing. Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour. Technol. 102 (19): 9321-9324 (2011a) [Google Scholar]
- X.J. Wang, G.H. Yang, Y.Z. Feng, G.X. Ren, X.H. Han, Z.L. Song. Anaerobic co-digestion effects of manure and straw and analysis of influencing factors. Agro-Environment Sci. 30 (12): 2594-2601 (2011b) [Google Scholar]
- Y.Y. Wang, Y.L. Zhang, J.B. Wang, L. Meng. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenerg. 33: 848-853 (2009) [CrossRef] [Google Scholar]
- S. Weiss, W. Somitsch, I. Klymiuk, S. Trajanoski, G.M. Guebitz. Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion. Bioresour. Technol. 207: 244–251 (2016) [Google Scholar]
- Wei, S.Z. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste. Appl. Microbiol. Biotechnol. 100 (23): 9821-9836 (2016) [CrossRef] [PubMed] [Google Scholar]
- B.T. Wen, X.F. Yuan, Y.Z. Cao, Y. Liu, X.F. Wang, Z.J. Cui. Optimization of liquid fermentation of microbial consortium WSD-5 followed by saccharification and acidification of wheat straw. Bioresour. Technol. 118: 141-149 (2012) [Google Scholar]
- B.T. Wen, X.F. Yuan, Q.X. Li, J.J. Liu, J.W. Ren. Wang, X.F., Cui, Z.J. Comparison and evaluation of concurrent saccharification and anaerobic digestion of Napier grass after pretreatment by three microbial consortia. Bioresour. Technol. 175: 102-111 (2015) [Google Scholar]
- X.Q. Xu, M.M. Lin, Q. Zang, S. Shi. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresour. Technol. 247: 88-95 (2018) [Google Scholar]
- Z. Yang, R. Guo, X. Xu, L. Wang, M. Dai. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia. Bioresour. Technol. 216: 471–477 (2016) [Google Scholar]
- L. Yan, Y.M. Gao, Y.J. Wang, Q. Liu, Z.Y. Sun, B.R. Fu, X. Wen, Z.J. Cui, W.D. Wang. Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour. Technol. 111: 49-54 (2012) [Google Scholar]
- X.F. Yuan, L. Ma, B.T. Wen, D.Y. Zhou, M. Kuang, W.H. Yang, Z.J. Cui. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresour. Technol. 207: 293-301 (2016) [Google Scholar]
- D.D. Zhang, Y. Wang, D. Zheng, P. Guo, W. Cheng, Z.J. Cui. New combination of xylanolytic bacteria isolated from the lignocellulose degradation microbial consortium XDC-2 with enhanced xylanase activity. Bioresour. Technol. 221: 686-690 (2016) [Google Scholar]
- J. Zhang, R.B. Guo, Y.L. Qiu, J.T. Qiao, X.Z. Yuan, X.S. Shi, C.S. Wang. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw. Bioresour Technol. 179: 306–313 (2015) [Google Scholar]
- Y. Zheng, J. Zhao, F.Q. Xu, Y.B. Li. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42: 35-53 (2014) [Google Scholar]
- C. Zhong, C.M. Wang, X.F. Wang, H.H. Jia, P. Wei, Y. Zhao. Enhanced biogas production from wheat straw with the application of synergistic microbial consortium pretreatment. RSC Adv. 6 (65): 60187-60195 (2016) [Google Scholar]
- W.Z. Zhong, Z.Z. Zhang, Y.J. Luo, S.S. Sun, W. Qiao, M. Xiao. Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour. Technol. 102: 11177-11182 (2011) [Google Scholar]
- Q.L. Zhu, L.C. Dai, B. Wu, F.R. Tan, W.G. Wang, X.Y. Tang, Y.W. Wang, M.X. He, G.Q. Hu. Integrated methane and ethanol production from livestock manure and soybean straw. Bio Resources 12 (2): 2284-2295 (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.