Open Access
Issue
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
Article Number 02004
Number of page(s) 4
Section Energy Equipment and Application
DOI https://doi.org/10.1051/e3sconf/201911802004
Published online 04 October 2019
  1. Wang, H., Meng, H. & Zhu, T. New model for onsite heat loss state estimation of general district heating network with hourly measurements. Energy Convers. Manag. 157, 71–85 (2018). [Google Scholar]
  2. Wu, Q., Ren, H., Gao, W., Weng, P. & Ren, J. Coupling optimization of urban spatial structure and neighborhood-scale distributed energy systems. Energy 144, 472–481 (2018). [CrossRef] [Google Scholar]
  3. Chicherin, S. Low-temperature district heating distributed from transmission-distribution junctions to users: energy and environmental modelling. Energy Procedia 147, 382–389 (2018). [Google Scholar]
  4. Zarin Pass, R., Wetter, M. & Piette, M. A. A thermodynamic analysis of a novel bidirectional district heating and cooling network. Energy 144, 20–30 (2018). [CrossRef] [Google Scholar]
  5. Hou, J. et al. Implementation of expansion planning in existing district energy system: A case study in China. Appl. Energy 211, 269–281 (2018). [Google Scholar]
  6. Romanchenko, D., Odenberger, M., Göransson, L. & Johnsson, F. Impact of electricity price fluctuations on the operation of district heating systems: A case study of district heating in Göteborg, Sweden. Appl. Energy 204, 16–30 (2017). [Google Scholar]
  7. Sernhed, K., Lygnerud, K. & Werner, S. Synthesis of Recent Swedish District Heating Research. Energy (2018). doi:10.1016/j.energy.2018.03.028 [Google Scholar]
  8. Brange, L., Englund, J. & Lauenburg, P. Prosumers in district heating networks – A Swedish case study. Appl. Energy 164, 492–500 (2016). [Google Scholar]
  9. Wang, H., Wang, H., Zhou, H. & Zhu, T. Modeling and optimization for hydraulic performance design in multi-source district heating with fluctuating renewables. Energy Convers. Manag. 156, 113–129 (2018). [Google Scholar]
  10. Vandermeulen, A., van der Heijde, B. & Helsen, L. Controlling district heating and cooling networks to unlock flexibility: A review. Energy (2018). doi:10.1016/j.energy.2018.03.034 [Google Scholar]
  11. Andrić, I., Fournier, J., Lacarrière, B., Le Corre, O. & Ferrão, P. The impact of global warming and building renovation measures on district heating system techno-economic parameters. Energy (2018). doi:10.1016/j.energy.2018.03.027 [Google Scholar]
  12. Sartor, K., Lemort, V. & Dewallef, P. Improved district heating network operation by the integration of high-temperature heat pumps. Int. J. Sustain. Energy 1–15 (2017). doi:10.1080/14786451.2017.1383409 [Google Scholar]
  13. Chicherin, S., Volkova, A., & Latõšov, E. GIS-based optimisation for district heating network planning. Energy Procedia, 149, 635–641 (2018). [Google Scholar]
  14. Geysen, D., De Somer, O., Johansson, C., Brage, J. & Vanhoudt, D. Operational thermal load forecasting in district heating networks using machine learning and expert advice. Energy Build. 162, 144–153 (2018). [Google Scholar]
  15. Noussan, M., Jarre, M. & Poggio, A. Real operation data analysis on district heating load patterns. Energy 129, 70–78 (2017). [CrossRef] [Google Scholar]
  16. Werner, S. International review of district heating and cooling. Energy (2017). doi:10.1016/j.energy.2017.04.045 [Google Scholar]
  17. Chicherin, S. V. Unlocking a potential of district heating network efficient operation and maintenance by minimizing the depth of a trench system. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 328, 49–56 (2017). [Google Scholar]
  18. Chicherin, S. V. New approach to determination of corrosion damage degree of pipeline system elements. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 327, 110–115 (2016). [Google Scholar]
  19. Averfalk, H. & Werner, S. Novel low temperature heat distribution technology. Energy 145, 526–539 (2018). [CrossRef] [Google Scholar]
  20. Valinčius, M., Vaišnoras, M. & Kaliatka, A. Study and demonstration of pressure wave-based leak detection in a district heating network. Struct. Infrastruct. Eng. 14, 151–162 (2018). [CrossRef] [Google Scholar]
  21. Tunzi, M., Boukhanouf, R., Li, H., Svendsen, S. & Ianakiev, A. Improving thermal performance of an existing UK district heat network: A case for temperature optimization. Energy Build. 158, 1576–1585 (2018). [Google Scholar]
  22. Chertkov, M. & Novitsky, N. N. Thermal Transients in District Heating Systems. Energy (2018). doi:10.1016/j.energy.2018.01.049 [Google Scholar]
  23. Dahl, M., Brun, A. & Andresen, G. B. Using ensemble weather predictions in district heating operation and load forecasting. Appl. Energy 193, 455–465 (2017). [Google Scholar]
  24. Badami, M., Fonti, A., Carpignano, A. & Grosso, D. Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach. Energy 144, 826–838 (2018). [CrossRef] [Google Scholar]
  25. Shan, X., Wang, P. & Lu, W. The reliability and availability evaluation of repairable district heating networks under changeable external conditions. Appl. Energy 203, 686–695 (2017). [Google Scholar]
  26. Schweiger, G., Larsson, P.-O., Magnusson, F., Lauenburg, P. & Velut, S. District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization. Energy 137, 566–578 (2017). [CrossRef] [Google Scholar]
  27. Deng, N. et al. Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load. Appl. Energy 205, 577–588 (2017). [Google Scholar]
  28. del Hoyo Arce, I. et al. Models for fast modelling of district heating and cooling networks. Renew. Sustain. Energy Rev. 82, 1863–1873 (2018). [CrossRef] [Google Scholar]
  29. Delangle, A., Lambert, R. S. C., Shah, N., Acha, S. & Markides, C. N. Modelling and optimising the marginal expansion of an existing district heating network. Energy 140, 209–223 (2017). [CrossRef] [Google Scholar]
  30. Guelpa, E., Barbero, G., Sciacovelli, A. & Verda, V. Peak-shaving in district heating systems through optimal management of the thermal request of buildings. Energy 137, 706–714 (2017). [CrossRef] [Google Scholar]
  31. Coss, S., Verda, V. & Le-Corre, O. Multi-objective optimization of District Heating Network model and assessment of Demand Side Measures using the load deviation index. J. Clean. Prod. (2018). doi:10.1016/j.jclepro.2018.02.083 [Google Scholar]
  32. Chicherin, S. V. Comparison of a district heating system operation based on actual data – Omsk city, Russia, case study. Int. J. Sustain. Energy 2019, 38 (6), 603-614.doi:10.1080/14786451.2018.1548466 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.