Open Access
E3S Web Conf.
Volume 119, 2019
Science and the Future 2 “Contradictions and Challenges”
Article Number 00011
Number of page(s) 6
Published online 27 September 2019
  1. European Parliament; Council of the European Union Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 amending Directive 2011/92/EU on the assessment of the effects of certain public and private projects on the environment. Off. J. Eur. Union, 124, 1–18 (2014). [Google Scholar]
  2. European Commission SMEs and the Environment in the European Union (2010). [Google Scholar]
  3. Hasle P.; Limborg H.J. A review of the literature on preventive occupational health and safety activities in small enterprises. Ind. Health, 44, 612 (2006). [Google Scholar]
  4. Verma V.K.; Bram De S.; Ruyck J. Small scale biomass heating systems: Standards, quality labelling and market driving factors - An EU outlook. Biomass and Bioenergy, 33, 1393–1402 (2009). [CrossRef] [Google Scholar]
  5. Goryunov A.; Goryunova N.; Ogunlana A.;Manenti F. Production of energy from biomass: near or distan future prospects? Chem. Eng. Trans, 52 (2016). [Google Scholar]
  6. Stolarski M.J.; Krzyzaniak M.; Warminski K.; M. Snieg, Energy economic and environmental assessment of heating a family house with biomass. Energy Build, 66, 395–404 (2013). [CrossRef] [Google Scholar]
  7. Klavs G.; Kudrenickis I.; Kundzina A. Analysis of Competitiveness and Support Instruments for Heat and Electricity Production from Wood Biomass in Latvia. Latv. J. Phys. Tech.Sci, 49, 313 (2012). [Google Scholar]
  8. Smeets E.M.W.; Faaij A.P.C. Bioenergy potentials from forestry in 2050. Clim. Change, 81, 353–390 (2006). [Google Scholar]
  9. Madlener R.; Koller M. Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria. Energy Policy 35, 6021–6035 (2007). [Google Scholar]
  10. Pognant F.; Bo M.; Nguyen Chi V.; Salizzoni P.; Clerico M. Modelling and evaluation of emission scenarios deriving from wood biomass boilers in alpine valley. Proceedings of the HARMO 2017 - 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 2017; (2017). [Google Scholar]
  11. Pognant F.; Bo M.; Nguyen C.V. Salizzoni P.; Clerico M. Design, Modelling and Assessment of Emission Scenarios Resulting from a Network of Wood Biomass Boilers. Environ. Model. Assess, 23, 157–164 (2018). [CrossRef] [Google Scholar]
  12. Vicente E.D.; Alves C.A. An overview of particulate emissions from residential biomass combustion. Atmos. Res, 199, 159–185 (2018). [CrossRef] [Google Scholar]
  13. Handler R.M.; Shonnard D.R.; Lautala P.; Abbas D.; Srivastava A. Environmental impacts of roundwood supply chain options in Michigan: life-cycle assessment of harvest and transport stages. J. Clean. Prod. 2014, 76, 64–73. [Google Scholar]
  14. Neri E.; Cespi D.; Setti L.; Gombi E.; Bernardi E.; Vassura I.; Passarini F.; Neri E.; Cespi D.; Setti al. Biomass Residues to Renewable Energy: A Life Cycle Perspective Applied at a Local Scale. Energies, 9, 922 (2016). [Google Scholar]
  15. Mendoza G.A.; Prabhu R. Development of a Methodology for Selecting Criteria and Indicators of Sustainable Forest Management: A Case Study on Participatory Assessment. Environ. Manage, 26, 659–673 (2000). [Google Scholar]
  16. Tissari J.; Lyyranen J.; Hytonen K.; Sippula O.; Tapper U.; Frey A.; Saarnio K.; Pennanen A.S.; Hillamo R.; Salonen R.O.; et al. Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos. Environ, 42, 7862–7873 (2008). [CrossRef] [Google Scholar]
  17. Tissari J.; Hytonen K.; Lyyranen J.; Jokiniemi J.A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmos. Environ, 41, 8330–8344 (2007). [Google Scholar]
  18. Meyer, N.K. Particulate, black carbon and organic emissions from small-scale residential wood combustion appliances in Switzerland. Biomass and Bioenergy, 36, 31–42 (2012). [CrossRef] [Google Scholar]
  19. Arshadi M.; Geladi P.; Gref R.; Fjallstrom P. Emission of Volatile Aldehydes and Ketones from Wood Pellets under Controlled Conditions. Ann. Occup.Hyg, 53, 797–805 (2009). [Google Scholar]
  20. Bruschweiler E.D.; Danuser B.; Cong K.H.; Wild P.; Schupfer P.; Vernez D.; boiteux, P.; Hopf, N.B. Generation of polycyclic aromatic hydrocarbons (PAHs) during woodworking operations. Cancer Epidemiol. Prev, 2, 148 (2012). [Google Scholar]
  21. Bugge M.; Skreiberg Ø. Haugen N.E.L.; Carlsson P.; Seljeskog M. Predicting NOx Emissions from Wood Stoves using Detailed Chemistry and Computational Fluid Dynamics. Energy Procedia, 75, 1740–1745 (2015). [CrossRef] [Google Scholar]
  22. Hays, M.D.; Smith, N.D.; Kinsey, J.; Dong, Y.; Kariher, P. Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorption—GC/MS. J. Aerosol Sci, 34, 1061–1084 (2003). [CrossRef] [Google Scholar]
  23. Calvo A.I.; Tarelho L.A.C.; Alves C.A.; Duarte M.; Nunes T. Characterization of operating conditions of two residential wood combustion appliances. Fuel Process. Technol, 126, 222–232 (2014) . [CrossRef] [Google Scholar]
  24. Caseiro, A.; Bauer, H.; Schmidl, C.; Pio, C.A.; Puxbaum, H. Wood burning impact on PM10 in three Austrian regions. Atmos. Environ, 43, 2186–2195 (2009). [CrossRef] [Google Scholar]
  25. Favez O.; Cachier H.; Sciare J.; Esteve R.; Sarda-Martinon L. Evidence for a significant contribution of wood burning aerosols to PM2.5 during the winter season in Paris, France. Atmos. Environ, 43, 3640–3644 (2009). [Google Scholar]
  26. Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int, 74, 136–143 (2015). [CrossRef] [PubMed] [Google Scholar]
  27. Gerasopoulos, E.; Kouvarakis, G.; Babasakalis, P.; Vrekoussis, M.; Putaud, J.-P.; Mihalopoulos, N. Origin and variability of particulate matter (PM10) mass concentrations over the Eastern Mediterranean. Atmos. Environ, 40, 4679–4690 (2006). [CrossRef] [Google Scholar]
  28. Bo, M.; Clerico, M.; Pognant, F. Application of risk analysis to improve environmental sustainability of forest yards in wood-energy chain. Int. Sci. Journal J.Environ. Sci, 2015, 125–130 (2015). [Google Scholar]
  29. Bo, M.; Fargione, P.; Maida, L.; Pognant, F. Occupational Safety and Health and Environmental Safety criticalities depending on geo-economic areas: a focus on mining and quarrying activities. Proceedings of the Prevention of accidents at work; 8 (2017). [Google Scholar]
  30. EEA Environmental indicators: Typology and overview (1999). [Google Scholar]
  31. Bo, M.; Clerico, M.; Pognant, F. Analytical method for environmental data representativeness of a territory. Geoing. Ambient. e Mineraria, 144 (2015). [Google Scholar]
  32. Pognant F. Environmental sustainability and Occupational Safety and Health in the forest energy chain for small generation systems. (2019). [Google Scholar]
  33. EN 303-5:2012 Heating boilers-Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW- Terminology, requirements, testing and marking (2012). [Google Scholar]
  34. European Commission Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2007 on ambient air quality and cleaner air for Europe (2008). [Google Scholar]
  35. CSN EN 12341, E.S. CSN EN 12341 – Ambient air – Standard gravimetric measurement method for the determination of the PM10 or PM2,5 mass concentration of suspended particulate (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.