Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01041
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/201912301041
Published online 22 October 2019
  1. Shylin, I.V. (1999). About the deformation of the vertical bent curve due to underground mining. Avtomobilni Dorohy i Dorozhnie Budivnytstvo, (57), 67-73. [Google Scholar]
  2. Biliatynskyi, O.A., Kryvodubskyi, O.A., & Pavlova, M.H. (1999). Mathematical modeling of the influence of underground work on the highway. Avtomobilni Dorohy i Dorozhnie Budivnytstvo, (57), 18-22. [Google Scholar]
  3. Dzhouns, K.D. (1989). Sooruzheniya iz armirovannogo grunta. Moskva: Stroyizdat. [Google Scholar]
  4. Timofeeva, L.M. (1991). Armirovanie gruntov. Teoriya i praktika primeneniya. Chast’ I. Armirovannye osnovaniya i armogruntovye podpornye steny. Perm’: Permskiy politekhnicheskiy institut. [Google Scholar]
  5. Ahn, T.B, Cho, S.D., & Yang, S.C. (2002). Stabilization of soil slope using geosynthetic mulching mat. Geotextiles and Geomembranes, 20(2), 135-146. https://doi.org/10.1016/S0266-1144(02)00002-X [CrossRef] [Google Scholar]
  6. Yu, Z., Woodward, P.K., Laghrouche, O., & Connolly, D. P. (2019). True triaxial testing of geogrid for high speed railways. Transportation Geotechnics, (20), 100247. https://doi.org/10.1016/j.trgeo.2019.100247 [Google Scholar]
  7. Savenko, V.Ya., Petrovych, V.V., & Kaskiv, V.I. (2000). Methods of calculation of reinforced slopes of the earth’s cloth. Visnyk Natsionalnoho Transportnoho Universytetu ta Transportnoi Akademii Ukrainy, (4), 98-104. [Google Scholar]
  8. Savenko, V.Ya., & Petrovych, V.V. (1998). Investigation of the nonlinear process of arterial massifs. Design, manufacture and operation of motor vehicles and trains. Novi Tekhnolohii, Konstruktsii, Rekomendatsii, 144-145. [Google Scholar]
  9. Lapidus, L.S. (1961). To calculate the movements of the earth’s surface caused by underground developments. Voprosy geotekhniki, (4), 11-27. [Google Scholar]
  10. Pidhornyi, O.V. (1999). Laboratory studies of the deformation of the rock massif. Avtomobilni Dorohy i Dorozhnie Budivnytstvo, (57), 138-143. [Google Scholar]
  11. Cheng, Y.M. (2003). Location of critical failure surface and some further studies on slope stability analysis. Computers and Geotechnics, 30(3), 255-267. https://doi.org/10.1016/S0266-352X(03)00012-0 [Google Scholar]
  12. Cheng, Y.M., Lansivaara, T., & Wei, W.B. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, 34(3), 137-150. https://doi.org/10.1016/j.compgeo.2006.10.011 [Google Scholar]
  13. Sokolovskiy, V.V. (1960). Statika sypuchey sredy. Moskva: Gosudarstvennoe izdatel’stvo fiziko-matematicheskoy literatury. [Google Scholar]
  14. El’sgol’ts, L.E. (1969). Differentsial’nye uravneniya i variatsionnoe ischislenie. Moskva: Nauka. [Google Scholar]
  15. Gol–dshteyn, M.N., Tsar’kov, A.A., & Cherkasov, I.I. (1981). Mekhanika gruntov, osnovaniya i fundamenty. Moskva: Transport. [Google Scholar]
  16. Shvets, V.B., Ginzburg, L.K., & Goldshteyn, V.M. (1987). Spravochnik po mekhanike i dinamike gruntov. Kiev: Budivelnyk. [Google Scholar]
  17. Dorfman, A.G. (1965). Variational method for studying the stability of slopes. Voprosy geotekhniki: Problemy mekhaniki zemlyanogo polotna zheleznykh dorog, (9), 17-25. [Google Scholar]
  18. Park, H-Jin,West, T.R., & Woo, Ik. (2005). Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Engineering Geology, 79(3-4), 230-250. https://doi.org/10.1016/j.enggeo.2005.02.001 [Google Scholar]
  19. Ruban, O.A., & Balashova, Yu.B. (2003). Method of calculating the stability of layered soils on a deformed basis for dominant vertical deformations and taking into account the speed of vehicles. Avtoshliakhovyk Ukrainy, 4(174), 41-43. [Google Scholar]
  20. GBN V.2.3-37641918-544:2014 (2014). Zastosuvannia heosyntetychnykh materialiv u dorozhnikh konstruktsiiakh. Kyiv: Ministerstvo infrastruktury Ukrainy. [Google Scholar]
  21. GBN V.2.3-37641918-544:2014 (2014). Zastosuvannia heosyntetychnykh materialiv u dorozhnikh konstruktsiiakh. Zmina No. 1. Kyiv: Ministerstvo infrastruktury Ukrainy. [Google Scholar]
  22. Balashova, Y., Ruban, O., & Bausk, A. (2003). Bearing capacity of reinforced soft water-saturated clayey basements taking account of rheological soil properties. In XIIIth European Conference on Soil Mechanics and Geotechnical Engeneering (pp. 85-88). [Google Scholar]
  23. Balashova, Y., & Ruban, O. (2004) Rheological processes in reinforced soils massifs. Theoretical Foundations of Civil Engeneering. Polish-Ukrainian Transactions, (12), 815-818. [Google Scholar]
  24. Osman, N., & Barakbah, S. S. (2006). Parameters to predict slope stability – Soil water and root profiles. Ecological Engineering, 28(1), 90-95. https://doi.org/10.1016/j.ecoleng.2006.04.004 [Google Scholar]
  25. Muho, E.V., & Beskou, N.D. (2019). Dynamic response of an isotropic elastic half-plane with shear modulus varying with depth to a load moving on its surface. Transportation Geotechnics, (20), 100248. https://doi.org/10.1016/j.trgeo.2019.100248 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.