Open Access
Issue
E3S Web Conf.
Volume 125, 2019
The 4th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2019)
Article Number 25007
Number of page(s) 4
Section Health, Safety, and Environment Information Systems
DOI https://doi.org/10.1051/e3sconf/201912525007
Published online 28 October 2019
  1. P. Hardik, P. Darshana, & D. Nishith, Assessment of Air Quality by Air Quality Index of an Urban Area of Arid Zone of India. Int. Journal of Advance Research in Science and Engineering, 5(09) (2016) [Google Scholar]
  2. A. Ghorani-Azam, B. Riahi-Zanjani, & M. Balali-Mood, Effects of air pollution on human health and practical measures for prevention in Iran. Journal of research in medical sciences, the official journal of Isfahan University of Medical Sciences, 21, (2016) [Google Scholar]
  3. M. Kowalska, L. Ośródka, K. Klejnowski, J.E. Zejda, E. Krajny & M. Wojtylak, Air quality index and its significance in environmental health risk communication. Archives of Environmental Protection, 35(1), 13-21 (2009) [Google Scholar]
  4. S.J.P. Buddharatna, J. Godboley, International Journal for Scientific Research & Development, 4(02), ISSN (online): 2321-0613 (2016) [Google Scholar]
  5. R.E. Lamare, & S.S. Chaturvedi, Suspended particulate matter in ambient air of Shillong city, Meghalaya, India. Ind J Sci Res Technol, 2, 37-41 (2014) [Google Scholar]
  6. P. Goyal, A.T. Chan, & N. Jaiswal, Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmospheric environment, 40(11), 2068-2077 (2006) [Google Scholar]
  7. M.A. Aarnio, J. Kukkonen, L. Kangas, M. Kauhaniemi, A. Kousa, C. Hendriks, & T. Elolähde, Modelling of particulate matter concentrations and source contributions in the Helsinki Metropolitan Area in 2008 and 2010 (2016) [Google Scholar]
  8. S.A. Pozza, E.P. Lima, T.T. Comin, M.L. Gimenes, & J.R. Coury, Time series analysis of PM2. 5 and PM10− 2.5 mass concentration in the city of Sao Carlos, Brazil. International Journal of Environment and Pollution, 41(1-2), 90-108 (2010) [Google Scholar]
  9. V. Naveen & N. Anu, Time Series Analysis to Forecast Air Quality Indices in Thiruvananthapuram District, Kerala, India. J Eng Res Appl, 7(6), 66-84 (2017) [Google Scholar]
  10. N.P. Sonaje, S.J. Mane, & A.S. Kote, Artificial Neural Network for One-Day-Ahead Forecasting of Respirable Suspended Particulate Matter Concentration. 1(6). pp. 95-99 (2013) [Google Scholar]
  11. R. Wongsathan, & I. Seedadan, A hybrid ARIMA and Neural Networks model for PM-10 pollution estimation: The case of Chiang Mai city moat area. Procedia Computer Science, 86, 273-276 (2016) [Google Scholar]
  12. H.T. Shahraiyni & S. Sodoudi, Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies. Atmosphere, 7(2), 15 (2016) [Google Scholar]
  13. A. Atakulreka & D. Sutivong, Avoiding local minima in feedforward neural networks by simultaneous learning. Australasian Joint Conference on Artificial Intelligence (pp. 100-109). Springer, Berlin, Heidelberg (2007) [Google Scholar]
  14. V. K. Ojha, A. Abraham & V. Snášel, Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97-116 (2017) [Google Scholar]
  15. J.R. Delgado, Meta-heuristic Optimization Algorithms for Neural Networks Training Thesis for: Master Degree, University of Information Sciences (2018) [Google Scholar]
  16. H.H. Örkçü, M. Doğan & M. Örkçü. A Hybrid Applied Optimization Algorithm for Training Multi-Layer Neural Networks in the Data Classification. Gazi University Journal of Science, 28(1), 115-132 (2015) [Google Scholar]
  17. V. K. Ojha, A. Abraham & V. Snášel, Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97-116 (2017) [Google Scholar]
  18. A. Chaloulakou, G. Grivas, N. Spyrellis, Neural network and multiple regression models for PM prediction in Athens: A comparative assessment. J. Air Waste Manag. Assoc. 53, 1183–1190 (2003) [CrossRef] [PubMed] [Google Scholar]
  19. J. Kukkonen, L. Partanen, A. Karppinen, J. Walden, R. Kartastenpää, P. Aarnio, T. Koskentalo, R. Berkowicz, Evaluation of the OSPM model combined with an urban background model against the data measured in 1997 in Runeberg Street, Helsinki. Atmos. Environ. 37, 1101–1112 (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.