Open Access
Issue
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 02006
Number of page(s) 8
Section Biomedical Engineering
DOI https://doi.org/10.1051/e3sconf/201912802006
Published online 08 November 2019
  1. Gupta R, Mohan I, Narula J. Trends in coronary heart disease epidemiology in India. Annals of global health. 2016 Mar 1; 82(2): 307–15. [CrossRef] [PubMed] [Google Scholar]
  2. Tonino PA, Bruyne De B, Pijls NH, Siebert U, Ikeno F, vant Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. New England Journal of Medicine. 2009 Jan 15; 360(3): 213–24. [CrossRef] [Google Scholar]
  3. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms:results from the prospective multicenter DISCOVER-FLOW(Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. Journal of the American College of Cardiology. 2011 Nov 1; 58(19): 1989–97. [CrossRef] [PubMed] [Google Scholar]
  4. Sherwin SJ, Formaggia L, Peiro J, Franke V. Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. International Journal for Numerical Methods in Fluids. 2003 [Google Scholar]
  5. Mynard JP, Nithiarasu P. A 1D arterial blood flow model incorporating ventricular pressure,aortic valve and regional coronary flow using the locally conservative Galerkin(LCG) method. Communications in Numerical Methods in Engineering. 2008 May;24(5): 367–417. [CrossRef] [Google Scholar]
  6. Iguchi T, Hasegawa T, Nishimura S, Nakata S, Kataoka T, Ehara S, Hanatani A, Shimada K, Yoshiyama M. Impact of lesion length on functional significance in intermediate coronary lesions. Clinical cardiology. 2013 Mar; 36(3): 172–7 [CrossRef] [PubMed] [Google Scholar]
  7. Thomas CG, Nithiarasu P. An element-wise,locally conservative Galerkin(LCG) method for solving diffusion and convection-diffusion problems. International journal for numerical methods in engineering. 2008 Jan 29;73(5): 642–64. [CrossRef] [Google Scholar]
  8. Varghese SS, Frankel SH, Fischer PF. Direct numerical simulation of stenotic flows.Part 1.Steady flow. Journal of Fluid Mechanics. 2007 Jul; 582: 253–80. [CrossRef] [Google Scholar]
  9. Low K, van Loon R, Sazonov I, Bevan RL, Nithiarasu P. An improved baseline model for a human arterial network to study the impact of aneurysms on pressure-flow waveforms. International journal for numerical methods in biomedical engineering. 2012 Dec; 28(12):1224–46.Oct 30;43(6–7): 673–700. [Google Scholar]
  10. Matthys, Koen S.,et al. ”Pulse wave propagation in a model human arterial network:assessment of 1-D numerical simulations against in vitro measurements.” Journal of biomechanics 40.15: 3476–3486, 2007. [CrossRef] [PubMed] [Google Scholar]
  11. st.Rammos K, Koullias GJ, Pappou TJ, Bakas AJ, Panagopoulos P, Tsangaris S. A computer model for the prediction of left epicardial coronary blood flow in normal,stenotic and bypassed coronary arteries, by single orsequential grafting.Cardiovascular surgery. 1998 Dec; 6(6): 635–48. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.