Open Access
Issue
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 06004
Number of page(s) 7
Section Multi-Phase Flows
DOI https://doi.org/10.1051/e3sconf/201912806004
Published online 08 November 2019
  1. D.Y. Li, H.J. Wang, Y.L. Qin, etal., Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode, Renewable Energy 126, 668–680 (2018). [CrossRef] [Google Scholar]
  2. S. Jain, and R. Patel, Investigations on pump running in turbine mode: A review of the state-of- the-art, Renewable and Sustainable Energy Reviews 30(2), 841–868 (2014). [CrossRef] [Google Scholar]
  3. X.L. Fu, D.Y. Li, H.J. Wang, etal., Energy Analysis in a Pump-Turbine during the Load Rejection Process, ASME J. Fluids Engineering 140(10), 101107 (2018). [CrossRef] [Google Scholar]
  4. A. Williams, Pumps as turbines. A user's guide, Intermediate Technology Publications, London, 1995. [Google Scholar]
  5. S.S. Yang, F.Y. Kong, W.M. Jiang, etal., Research on impeller trimming to the influence of pump as turbine, Computer and Fluids 67(8), 72–78 (2012). [CrossRef] [Google Scholar]
  6. T. Lydon, P. Coughlan, and A. McNabola, Pressure management and energy recovery in water distribution networks: Development of design and selection methodologies using three pump-as- turbine case studies, Renewable Energy 114, 1038–1050 (2017). [CrossRef] [Google Scholar]
  7. X. Tan, and A. Engeda, Performance of centrifugal pumps running in reverse as turbine: Part II- systematic specific speed and specific diameter based performance prediction, Renew Energy 99, 188–197 (2016). [CrossRef] [Google Scholar]
  8. O. Fecarotta, A. Carravetta, H.M. Ramos, etal., An improved affinity model to enhance variable operating strategy for pumps used as turbines, J. Hydraul Res., 3, 1–10 (2016). [Google Scholar]
  9. S. Barbarelli, M. Amelio, and G. Florio, Predictive model estimating the performances of centrifugal pumps used as turbines, Energy 107, 103–121 (2016). [CrossRef] [Google Scholar]
  10. A. Doshi, S. Channiwala, and P. Singh, Inlet impeller rounding in pumps as turbines: An experimental study to investigate the relative effects of blade and shroud rounding, Exp Therm Fluid Sci. 82, 333–348 (2017). [CrossRef] [Google Scholar]
  11. B. Schiavello, and F.C. Viser, Pump cavitation- various NPSHR criteria, NPSHA margins, and impeller expectancy, Proceedings of the twenty fifth international pump users symposium, pp. 113–144 (2009). [Google Scholar]
  12. T. Asahara, Pumping Station Engineering Hand Book, Japan Association of Agriculture Engineering Enterprises, Tokyo, Japan, 1991. [Google Scholar]
  13. C.E. Brennen, Hydrodynamics of pump, Oxford University Press, Oxford, UK, 1994. [Google Scholar]
  14. M. Rakibuzzaman, K. Kim, and S.-H. Suh, Numerical Analysis of Cavitation phenomena with Variable Speed Centrifugal Pump, J. Power Technologies 96(4), 306–311 (2016). [Google Scholar]
  15. M. Rakibuzzaman, N. Park, and S.-H. Suh, Analysis of Cavitation with Rotational Speed and Water Temperature Changes of Centrifugal Pump, KSFM J. of Fluid Machinery 20(5), 40–45, (2017). [CrossRef] [Google Scholar]
  16. M. Rakibuzzaman, S.-H. Suh, K. Kim, etal., A study on multistage centrifugal pump performance characteristics for variable speed drive system, Procedia Engineering 105, 270–275 (2015). [CrossRef] [Google Scholar]
  17. F. Bakir, R. Rey, A.G. Gerber, T. Belamri, and B. Hutchinson, Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer, Int. J. Rotating Machinery 10, 15–25 (2004). [CrossRef] [Google Scholar]
  18. R.B. Medvitz, R.F. Kunz, etal., Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD, J. of Fluids Engineering 124, 377–383 (2002). [CrossRef] [Google Scholar]
  19. S. Bruno, and C. V. Frank, Pump cavitation-various NPSHR criteria, NPSHA margins, and impeller expectancy, Proceedings of the twenty fifth international pump user's symposium, 113–144, (2009) . [Google Scholar]
  20. M. Rakibuzzaman, S. -H. Suh, and H. -H. Kim, Relationship between cavitation incipient and NPSH for inverter drve centrifugal pumps, KSFM J. of Fluid Machinery 18(6), 76–80 (2015). [CrossRef] [Google Scholar]
  21. Rakibuzzaman M., Kim K., and Suh S.-H, Numerical and experimental investigation of cavitation flows in a multistage centrifugal pump, J. Mechanical Science and Technology, 32(3), 1071–1078 (2018). [CrossRef] [Google Scholar]
  22. S. Liu, Numerical simulation of 3D cavitating turbulent flow in Francis turbine, Proceedings of FEDSM2005, Houston, TX, USA, June 19–23, 2005. [Google Scholar]
  23. F. Avellan, Introduction to cavitation in hydraulic machinery, The 6th Int. Conference on Hydraulic Machinery and Hydrodynamics Timisoara, Romania, October 21 - 22, 11–22, 2004. [Google Scholar]
  24. M. Maekawa, K. Miyagawa, T. Komuro, and H. Fukuda, Study of cavitation erosion on hydraulic turbine runners, 5th Int. Symp. on Cavitation (CAV2003), Osaka, Japan, November 1–4, 2003. [Google Scholar]
  25. P. Kumar, and R. P. Saini, Study of cavitation in hydro turbines—a review, Renewable and Sustainable Energy Reviews 14(1), 374–383, (2010) . [CrossRef] [Google Scholar]
  26. Ansys Inc. 2013, ANSYS-CFX (CFX Introduction, CFX Reference guide, CFX Tutorials, CFX-Pre User's Guide, CFX-Solver Manager User's Guide, Theory Guide),release 15.00, USA. [Google Scholar]
  27. , H.-H. Kim, M. Rakibuzzaman, K. Kim, S.-H Suh, Flow and Fast Fourier Transform Analyses for Tip Clearance Effect in an Operating Kaplan Turbine, Energies 12, 264 (2019). [CrossRef] [Google Scholar]
  28. M. Rakibuzzaman, H.-H. Kim, K. Kim, S.-H. Suh, K.Y. Kim, Numerical Study of Sediment Erosion Analysis in Francis Turbine, Sustainability 11, 1423 (2019). [CrossRef] [Google Scholar]
  29. D.C. Wilcox, Turbulence Modeling for CFD, 1st edition, DCW Industries, Inc., California, USA, 1994. [Google Scholar]
  30. F.R. Menter, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal 32(8), 1598–1605 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  31. N.J. Georgiadis, D.A. Yoder, and W.B. Engblorn, Evaluation of modified two-equation turbulence models for jet flow predictions, AIAA Journal 44(12) 3107–3114 (2006). [CrossRef] [Google Scholar]
  32. D. Liang, D. Cui, L. Hai, and F. Zhao, A hydraulic performance comparison of centrifugal pump operating in pump and turbine mode, J. Thermal Science JTS-19-0121 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.