Open Access
Issue
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 06006
Number of page(s) 6
Section Multi-Phase Flows
DOI https://doi.org/10.1051/e3sconf/201912806006
Published online 08 November 2019
  1. T.M. Schutzius, S. Jung, T. Maitra, G. Graeber, M. Kohme, D. Poulikakos, Spontaneous droplet trampolining on rigid superhydrophobic surfaces, Nature, 527 (2015) 82–85. [CrossRef] [PubMed] [Google Scholar]
  2. G. Lagubeau, M. Le Merrer, C. Clanet, D. Quéré, Leidenfrost on a ratchet, Nature Physics, 7 (2011) 395–398. [CrossRef] [Google Scholar]
  3. , X.-H. Yang, S.-C. Tan, Y.-J. Ding, J. Liu, Flow and thermal modeling and optimization of micro/mini- channel heat sink, Applied Thermal Engineering, 117 (2017) 289–296. [CrossRef] [Google Scholar]
  4. N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, E.N. Wang, Jumping-Droplet- Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces, Nano letters, 13 (2013) 179–187. [CrossRef] [PubMed] [Google Scholar]
  5. , X.-H. Yang, S.-C. Tan, Y.-J. Ding, J. Liu, Flow and thermal modeling and optimization of micro/mini- channel heat sink, Applied Thermal Engineering, 117 (2017) 289–296. [CrossRef] [Google Scholar]
  6. Condensation on Scalable Superhydrophobic Nanostructured Surfaces, Nano letters, 13 (2013) 179–187. [CrossRef] [PubMed] [Google Scholar]
  7. X. Ma, S. Wang, Z. Lan, B. Peng, H.B. Ma, P. Cheng, Wetting Mode Evolution of Steam Dropwise Condensation on Superhydrophobic Surface in the Presence of Noncondensable Gas, Journal of Heat Transfer, 134 (2011) 021501-021501-021509. [Google Scholar]
  8. Z. Khatir, K.J. Kubiak, P.K. Jimack, T.G. Mathia, Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach, Applied Thermal Engineering, 106 (2016) 1337–1344. [CrossRef] [Google Scholar]
  9. F. Chu, X.M Wu, Q. Ma, Condensed droplet growth on surfaces with various wettability, Applied Thermal Engineering, 115 (2017) 1101–1108. [CrossRef] [Google Scholar]
  10. J. Oh, P. Birbarah, T. Foulkes, S.L. Yin, M. Rentauskas, J. Neely, R.C.N. Pilawa-Podgurski, N. Miljkovic, Jumping-droplet electronics hot-spot cooling, Applied Physics Letters, 110(12) (2017) 123107. [CrossRef] [Google Scholar]
  11. K.F. Wiedenheft, H.A. Guo, X. Qu, J.B. Boreyko, F. Liu, K. Zhang, F. Eid, A. Choudhury, Z. Li, C.-H. Chen, Hotspot cooling with jumping-drop vapor chambers, Applied Physics Letters, 110(14) (2017) 141601. [CrossRef] [Google Scholar]
  12. T. Foulkes, J. Oh, P. Birbarah, J. Neely, N. Miljkovic, R.C.N. Pilawa-Podgurski, Ieee,Active Hot Spot Cooling of GaN Transistors With Electric Field Enhanced Jumping Droplet Condensation, in: 2017 Thirty Second Annual Ieee Applied Power Electronics Conference and Exposition,Ieee, New York, 2017, pp. 912–918. [Google Scholar]
  13. J.B. Boreyko, C.P. Collier, Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces, ACS Nano, 7 (2013) 1618–1627. [CrossRef] [Google Scholar]
  14. H. Sojoudi, M. Wang, N.D. Boscher, G.H. McKinley, K.K. Gleason, Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces, Soft matter, 12(7) (2016) 1938-1963. [Google Scholar]
  15. F. Chu, X.M Wu, L. Wang, Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces, ACS Appl Mater Interfaces, 9 (2017) 8420–8425. [CrossRef] [Google Scholar]
  16. Z. Zuo, R. Liao, X. Zhao, X. Song, Z. Qiao, C. Guo, A. Zhuang, Y. Yuan, Anti-frosting performance of superhydrophobic surface with ZnO nanorods, Applied Thermal Engineering, 110 (2017) 39–48. [CrossRef] [Google Scholar]
  17. F. Chu, D. Wen, X.M Wu, Frost Self-Removal Mechanism during Defrosting on Vertical Superhydrophobic Surfaces: Peeling Off or Jumping Off, Langmuir, (2018). [Google Scholar]
  18. J.B. Boreyko, C.H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Physical Review Letters, 103 (2009) 184501. [CrossRef] [PubMed] [Google Scholar]
  19. G.S. Watson, M. Gellender, J.A. Watson, Selfpropulsion of dew drops on lotus leaves: a potential mechanism for self cleaning, Biofouling, 30 (2014) 427–434. [CrossRef] [PubMed] [Google Scholar]
  20. F. Chu, X.M Wu, B. Zhu, X. Zhang, Self-propelled droplet behavior during condensation on superhydrophobic surfaces, Applied Physics Letters, 108 (2016) 194103. [CrossRef] [Google Scholar]
  21. M.D. Mulroe, B.R. Srijanto, S.F. Ahmadi, C.P. Collier, J.B. Boreyko, Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation, ACS Nano, 11 (2017) 8499–8510. [CrossRef] [Google Scholar]
  22. T.Q. Liu, W. Sun, X.Y. Sun, H.R. Ai, Mechanism study of condensed drops jumping on superhydrophobic surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414 (2012) 366–374. [CrossRef] [Google Scholar]
  23. , F.-C. Wang, F. Yang, Y.-P. Zhao, Size effect on the coalescence-induced self-propelled droplet, Applied Physics Letters, 98 (2011) 053112. [CrossRef] [Google Scholar]
  24. R. Enright, How Coalescing Droplets Jump, (2014). [Google Scholar]
  25. F. Chu, X.M Wu, Y. Zhu, Z. Yuan, Relationship between condensed droplet coalescence and surface wettability, International Journal of Heat and Mass Transfer, 111 (2017) 836–841. [CrossRef] [Google Scholar]
  26. F. Liu, G. Ghigliotti, J.J. Feng, C.-H. Chen, Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, Journal of Fluid Mechanics, 752 (2014) 39–65. [CrossRef] [Google Scholar]
  27. K. Wang, Q. Liang, R. Jiang, Y. Zheng, Z. Lan, X. Ma, Numerical simulation of coalescence-induced jumping of multi-droplets on superhydrophobic surfaces: initial droplet arrangements effect, Langmuir the Acs Journal of Surfaces & Colloids, 33 (2017). [Google Scholar]
  28. F. Chu, Z. Yuan, X. Zhang, X.M Wu, Min, Energy analysis of droplet jumping induced by multi-droplet coalescence: The influences of droplet number and droplet location, International Journal of Heat and Mass Transfer, 121 (2018) 315–320. [CrossRef] [Google Scholar]
  29. H. Vahabi, W. Wang, S. Davies, J.M. Mabry, A.K. Kota, Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces, ACS Appl Mater Interfaces, 9 (2017) 29328–29336. [CrossRef] [Google Scholar]
  30. H. Vahabi, W. Wang, J.M. Mabry, A.K. Kota, Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture, Science Advances, 4 (2018) eaau3488. [CrossRef] [PubMed] [Google Scholar]
  31. X. Chen, J.A. Weibel, S.V. Garimella, Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces, ACS Omega, 2 (2017) 2883–2890. [CrossRef] [PubMed] [Google Scholar]
  32. K. Wang, Q. Liang, R. Jiang, Y. Zheng, Z. Lan, X. Ma, Self-enhancement of droplet jumping velocity: the interaction of liquid bridge and surface texture, RSC Advances, 6 (2016) 99314–99321. [CrossRef] [Google Scholar]
  33. M. decomposeParLiu, X.-P. Chen, Numerical study on the stick-slip motion of contact line moving on heterogeneous surfaces, Physics of Fluids, 29 (2017) 082102. [CrossRef] [Google Scholar]
  34. K. Zhang, F. Liu, A.J. Williams, X. Qu, J.J. Feng, C.H. Chen, Self-Propelled Droplet Removal from Hydrophobic Fiber-Based Coalescers, Phys Rev Lett, 115 (2015) 074502. [CrossRef] [PubMed] [Google Scholar]
  35. X. Qu, J.B. Boreyko, F. Liu, R.L. Agapov, N.V. Lavrik, S.T. Retterer, J.J. Feng, C.P. Collier, C.-H. Chen, Self-propelled sweeping removal of dropwise condensate, Applied Physics Letters, 106 (2015) 221601. [CrossRef] [Google Scholar]
  36. Z. Yuan, R. Wu, X.M Wu, Numerical simulations of multi-hop jumping on superhydrophobic surfaces, International Journal of Heat and Mass Transfer, 135 (2019) 345–353. [CrossRef] [Google Scholar]
  37. Z. Yuan, X.M Wu, F. Chu, R. Wu, Numerical simulations of guided self-propelled jumping of droplets on a wettability gradient surface, Applied Thermal Engineering, 156 (2019) 524–530. [CrossRef] [Google Scholar]
  38. J.B. Lee, D. Derome, A. Dolatabadi, J. Carmeliet, Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments, Langmuir, 32 (2016) 1279–1288. [CrossRef] [PubMed] [Google Scholar]
  39. R. Attarzadeh, A. Dolatabadi, Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces, Physics of Fluids, 29 (2017) 012104. [CrossRef] [Google Scholar]
  40. , C.-H. Chen, Q. Cai, C. Tsai, C.-L. Chen, G. Xiong, Y. Yu, Z. Ren, Dropwise condensation on superhydrophobic surfaces with two-tier roughness, Applied Physics Letters, 90 (2007) 173108. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.