Open Access
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 07004
Number of page(s) 5
Section Internal Flow and Heat Transfer
Published online 08 November 2019
  1. L. Wang, A.P Roskilly, R. Wang, “Solar powered cascading cogeneration cycle with ORC and adsorption technologyfor electricity and refrigeration”, Heat Transfer Engineering, 35(11–12), pp.1028–1034 (2014). [CrossRef] [Google Scholar]
  2. A. Kaya, M. Lazova, ö. Bagci, S. Lecompte, B. Ameel, M. DePaepe, “Design sensitivity of a plate-finned air-cooled condenser for low-temperature organic Rankine cycles”, Heat Transfer Engineering, 38(11–12), pp.1018–1033 (2017). [CrossRef] [Google Scholar]
  3. Y. Dai, D. Hu, Y. Wu, Y Gao, Y Cao, “Comparison of a basic organic Rankine cycle and a parallel d ouble-evaporator organic Rankine-cycle”, Heat Transfer Engineering, 38(11–12), pp.990–999 (2017). [CrossRef] [Google Scholar]
  4. N. Kamarudin, L.P Yen, N.W.C. Jusoh, W.S. Ho, J.S. Lim, “Organic Rankine cycle and steam turbine for intermediate temperature waste heat recovery in total site integration”, Malaysian J. Fundamental and Applied Sciences, 15(1), pp.125–130 (2019). [CrossRef] [Google Scholar]
  5. A.C. Benim, M. Geiger, S. Doehler, M.S choenenberger, H. Roemer, “Modelling the flow in the exhaust hood of steam turbines under consideration of turbine-exhaust hood interaction”, in: Proceed. 1st European. Conf. Turbomachinery - Fluid Dynamic and Thermodynamic Aspects: Computational. Methods, Erlangen, Germany, March 1-3, 1995, Book Series: VDI Ber., Vol.1185, pp.343–357 (VDI Verlag, Duesseldorf, 1995) [Google Scholar]
  6. J.G Andreasen, A. Meroni F. Haglind, comparison of organic and steam rankine cycle power systems for waste heat recovery on large ships“, Energies, 547, 10, 10.3390/en10040547. [Google Scholar]
  7. W.M. Kays, Convective Heat and Mass Transfer, Tata Mc-Graw-Hill Publ. Comp., New Delhi, 1975) [Google Scholar]
  8. A.C. Benim, “A finite element solution of radiative heat transfer in participating media utilizing the moment method”, Computer Methods in Applied Mechanics and Engineering, 67(1), pp.1–14 (1988). [CrossRef] [Google Scholar]
  9. C. Wang, C. Hung, W. Chen, “Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization”, Energy, 39(1), pp.236–245 (2012). [CrossRef] [Google Scholar]
  10. P. Mayer, R. Ram, “ Optimization of heat sink-limited thermoelectric generators”, Nanoscale and Microscale Thermophysical Engineering, 10(2), pp.143–155 (2006). [CrossRef] [Google Scholar]
  11. G Li, G Zhang, W. He, J. Ji, S. Lv, X. Chen, H. Chen, “Performance analysis on a solar c oncentrating thermoelectric generator using the micro-channel heat pipe array”, Energy Conversion and Management, 112, pp.191–198 (2016). [CrossRef] [Google Scholar]
  12. R.Y. Nuwayhid, A. Shihadeh, N. Ghaddar, “Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling”, Energy Conversion and Management, 46(9–10), pp. 1631–1643 (2005). [CrossRef] [Google Scholar]
  13. M. F. Remeli, A. Date, B. Orr, L.C. Ding, B. Singh, N.D. Affandi, A. Akbarzadeh, “Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system”, Energy Conversion and Management, 111, pp.147–157 (2016). [CrossRef] [Google Scholar]
  14. D.G Ebling, A. Krumm, B. Pfeiffelmann, J. Gottschald, J. Bruchmann, A.C. Benim, M. Adam, R. Labs, R.R. Herbertz, A. Stunz, “Development of a system for thermoelectric heat recovery from stationary industrial processes”, Journal of Electronic Materials, 45(7), pp.3433–3439 (2016). [CrossRef] [Google Scholar]
  15. A. Rezania, L.A. Rosendahl, “New configurations of micro plate-fin heat sink to reduce coolant pumping power”, Journal of Electronic Materials, 41(6), pp.1298–1304 (2012) [CrossRef] [Google Scholar]
  16. L.C. Ding, N. Meyerheinrich, L. Tan, K. Rahaoui, R. Jain, A. Akbarzadeh, “Thermoelectric Power Generation from Waste Heat of Natural Gas Water Heater”, Energy Procedia, 110, pp.32–37 (2017). [CrossRef] [Google Scholar]
  17. R. Stobart, M. Wijewardane, Z. Yang, “Comprehensive analysis of thermoelectric generation systems for automotive applications”, Applied Thermal Eng., 112, pp.1433–1444 (2017). [CrossRef] [Google Scholar]
  18. S.W. Angrist, Direct Energy Conversion, 3rd ed. (Cambridge University Press, Cambridge, 1996) [Google Scholar]
  19. R. Rabari, S. Mahmud, A. Dutta, M. Biglarbegian, “Effect of convection heat transfer on performance of waste water thermoelectric generator”, Heat Transfer Engineering, 36(17), pp.1458–1471 (2015). [CrossRef] [Google Scholar]
  20. E.E. Antonova, D.C. Looman, “Finite elements for thermoelectric device in ANSYS”, Proc. 24th International Thermoelectric Conference, Clemson, SC, USA, pp.200–203 (2005). [Google Scholar]
  21. M. Chen, A. Rosendahl, T.A. Condra, “A threedimensional numerical model of thermoelectric generators in fluid power systems”, International Journal of Heat and Mass Transfer, 54(1–3), pp.345–355 (2011) [CrossRef] [Google Scholar]
  22. A. Montecucco, J. Siviter, A.R. Knox, “The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel”, Applied Energy, 123, pp.47–54 (2014). [CrossRef] [Google Scholar]
  23. K. Sun, Z. Qiu, H. Wu, Y Xing, “Evaluation on High-Efficiency Thermoelectric Generation Systems Based on Differential Power Processing”, IEEE Transactions on Industrial Electronics, 65(1), pp.699–708 (2018). [CrossRef] [Google Scholar]
  24. The OpenFOAM Foundation. Retrieved October 02, from (2019) [Google Scholar]
  25. B. Pfeiffelmann, A.C. Benim, F. Joos, “A finite volume analysis of thermoelectric generators”, Heat Transfer Engineering, 40(17), 10.1080/01457632.2018.1474588 (2019) [Google Scholar]
  26. B. Pfeiffelmann, A.C. Benim, F. Joos, “Numerical a nalysis of liquid jet impingement cooling of a thermoelectric generator”, MATEC Web of Conferences, 240(11–12): 01032, 10.1051/matecconf/201824001032 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  27. C. Goupil, (Ed.), Continuum Theory and Modelling of Thermoelectric Elements (Wiley-VCH, Weinheim, Germany, 2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.