Open Access
Issue
E3S Web Conf.
Volume 131, 2019
2nd International Conference on Biofilms (ChinaBiofilms 2019)
Article Number 01004
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/201913101004
Published online 19 November 2019
  1. Wang, S. et al. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings. Expert review of molecular diagnostics 16, 449-459 (2016). [CrossRef] [PubMed] [Google Scholar]
  2. Yin K, P. V., Kadimisetty K, Ruiz C, Cooper K, You J, Liu C. Synergistically enhanced colorimetric molecular detection using smart cup: a case for instrument-free HPV-associated cancer screening. Theranostics 9 9 (2019). [Google Scholar]
  3. Luppa, P. B., Müller, C., Schlichtiger, A. & Schlebusch, H. Point-of-care testing (POCT): Current techniques and future perspectives. TrAC Trends in Analytical Chemistry 30, 887-898 (2011). [CrossRef] [Google Scholar]
  4. Vashist, S. K., Luppa, P. B., Yeo, L. Y., Ozcan, A. & Luong, J. H. Emerging technologies for next-generation point-of-care testing. Trends in biotechnology 33, 692-705 (2015). [CrossRef] [PubMed] [Google Scholar]
  5. Zare, R. N. & Kim, S. Microfluidic platforms for single-cell analysis. Annual review of biomedical engineering 12, 187-201 (2010). [CrossRef] [PubMed] [Google Scholar]
  6. Bridle, H., Miller, B. & Desmulliez, M. P. Application of microfluidics in waterborne pathogen monitoring: A review. water research 55, 256-271 (2014). [CrossRef] [Google Scholar]
  7. Zhang, L. et al. Point-of-care-testing of nucleic acids by microfluidics. TrAC Trends in Analytical Chemistry 94, 106-116 (2017). [CrossRef] [Google Scholar]
  8. Zhang, X. et al. Smart ring: a wearable device for hand hygiene compliance monitoring at the point-of-need. Microsystem Technologies, 1-6 (2018). [Google Scholar]
  9. Urban, G. A. Micro-and nanobiosensors—state of the art and trends. Measurement science and Technology 20 012001 (2008). [CrossRef] [Google Scholar]
  10. Gervais, L., De Rooij, N. & Delamarche, E. Microfluidic chips for point -of -care immunodiagnostics. Advanced materials 23, H151-H176 (2011). [CrossRef] [Google Scholar]
  11. Faustino, V., Catarino, S. O., Lima, R. & Minas, G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of biomechanics 49, 2280-2292 (2016). [CrossRef] [PubMed] [Google Scholar]
  12. Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro-and nanoscale patterning. Nature protocols 5 491 (2010). [CrossRef] [PubMed] [Google Scholar]
  13. Mitra, S. K. & Chakraborty, S. Microfluidics and nanofluidics handbook: fabrication, implementation, and applications. (CRC press, 2016). [CrossRef] [Google Scholar]
  14. Wan, L. et al. A digital microfluidic system for loop-mediated isothermal amplification and sequence specific pathogen detection. Scientific reports 7 14586 (2017). [CrossRef] [PubMed] [Google Scholar]
  15. Pinto, E. et al. A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis. Micromachines 6, 121-135 (2015). [CrossRef] [Google Scholar]
  16. Mou, L. & Jiang, X. Materials for microfluidic immunoassays: a review. Advanced healthcare materials 6 1601403 (2017). [CrossRef] [Google Scholar]
  17. Yang, M. et al. Skiving stacked sheets of paper into test paper for rapid and multiplexed assay. Science advances 3, eaao4862 (2017). [CrossRef] [PubMed] [Google Scholar]
  18. Nimse, S. B., Sonawane, M. D., Song, K.-S. & Kim, T. Biomarker detection technologies and future directions. Analyst 141, 740-755 (2016). [CrossRef] [PubMed] [Google Scholar]
  19. Joh, D. Y. et al. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proceedings of the National Academy of Sciences 114, E7054-E7062 (2017). [CrossRef] [Google Scholar]
  20. BelBruno, J. J. Molecularly imprinted polymers. Chemical reviews 119, 94-119 (2018). [CrossRef] [PubMed] [Google Scholar]
  21. Birnbaumer, G. M. et al. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab on a Chip 9, 3549-3556 (2009). [CrossRef] [PubMed] [Google Scholar]
  22. Tombelli, S., Minunni, M. & Mascini, M. Analytical applications of aptamers. Biosensors and Bioelectronics 20, 2424-2434 (2005). [CrossRef] [PubMed] [Google Scholar]
  23. Sefah, K., Shangguan, D., Xiong, X., O’donoghue, M. B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nature protocols 5 1169 (2010). [CrossRef] [PubMed] [Google Scholar]
  24. Mori, Y. & Notomi, T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. Journal of infection and chemotherapy 15, 62-69 (2009). [CrossRef] [Google Scholar]
  25. El Wahed, A. A. et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PloS one 8, e71642 (2013). [Google Scholar]
  26. James, A., Geijskes, R., Dale, J. & Harding, R. Development of a novel rolling-circle amplification technique to detect Banana streak virus that also discriminates between integrated and episomal virus sequences. Plant disease 95, 57-62 (2011). [CrossRef] [PubMed] [Google Scholar]
  27. Niemz, A., Ferguson, T. M. & Boyle, D. S. Point-of-care nucleic acid testing for infectious diseases. Trends in biotechnology 29, 240-250 (2011). [CrossRef] [PubMed] [Google Scholar]
  28. Priye, A. et al. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Scientific reports 7 44778 (2017). [CrossRef] [PubMed] [Google Scholar]
  29. Kong, J. E. et al. Highly stable and sensitive nucleic acid amplification and cell-phone-based readout. ACS nano 11, 2934-2943 (2017). [CrossRef] [Google Scholar]
  30. Aronoff-Spencer, E. et al. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosensors and Bioelectronics 86, 690-696 (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.