Open Access
Issue |
E3S Web Conf.
Volume 131, 2019
2nd International Conference on Biofilms (ChinaBiofilms 2019)
|
|
---|---|---|
Article Number | 01022 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/e3sconf/201913101022 | |
Published online | 19 November 2019 |
- T. Matozaki, Y. O. Murata, Hideki, H. Ohnish, Functions and molecular mechanisms of the CD47-SIRP alpha signalling pathway. Trends in Cell Biology 19, 72-80 (2009). [CrossRef] [PubMed] [Google Scholar]
- A. A. Barkal et al., Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nature Immunology 19, 76-84 (2018). [CrossRef] [PubMed] [Google Scholar]
- M. E. Keir, G. J. Butte MJFreeman, PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology 26, 677-704 (2008). [Google Scholar]
- C. Blank et al., Absence of Programmed Death Receptor 1 Alters Thymic Development and Enhances Generation of CD4/CD8 Double-Negative TCR-Transgenic T Cells. The Journal of Immunology 171, 4574-4581 (2003). [CrossRef] [Google Scholar]
- P. S. Linsley et al., Intracellular Trafficking of CTLA-4 and Focal Localization Towards Sites of TCR Engagement. Immunity 4 535 (1996). [CrossRef] [PubMed] [Google Scholar]
- H. Dong et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Medicine 8, 793-800 (2002). [CrossRef] [PubMed] [Google Scholar]
- Expression of the B7 -related molecule B7 H1 by glioma cells: a potential mechanism of immune paralysis. Chinese Journal of Neurooncology, (2003). [Google Scholar]
- A. Garcia-Diaz et al., Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Reports 19 1189 (2017). [CrossRef] [PubMed] [Google Scholar]
- N. Borcherding et al., Keeping tumors in check: A mechanistic review of clinical response and resistance to immune checkpoint blockade in cancer. Journal of Molecular Biology, (2018). [Google Scholar]
- B. Schreiner et al., Interferon-β enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. Journal of Neuroimmunology 155, 172-182 (2004). [CrossRef] [PubMed] [Google Scholar]
- J. M. Chemnitz, R. V. Parry, K. E. Nichols, C. H. June, J. L. Riley, SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. Journal of Immunology 173, 945-954 (2004). [CrossRef] [Google Scholar]
- K. A. Sheppard et al., PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. Febs Letters 574, 37-41 (2004). [CrossRef] [PubMed] [Google Scholar]
- E. B. Garon et al., Pembrolizumab for the treatment of non-small-cell lung cancer. New England Journal of Medicine 372 2018 (2015). [CrossRef] [PubMed] [Google Scholar]
- A. Ribas et al., Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. Journal of the American Medical Association 315 1600 (2016). [CrossRef] [PubMed] [Google Scholar]
- C. A. Chambers, M. S. Kuhns, J. G. Egen, J. P. Allison, CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annual Review of Immunology 19, 565-594 (2000). [Google Scholar]
- D. R. Leach, M. F. Krummel, J. P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734-1736 (1996). [CrossRef] [PubMed] [Google Scholar]
- T. L. Walunas et al., CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405-413 (1994). [CrossRef] [PubMed] [Google Scholar]
- D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer 12, 252-264 (2012). [CrossRef] [PubMed] [Google Scholar]
- A. Ribas, Adaptive Immune Resistance: How Cancer Protects from Immune Attack. Cancer Discovery 5 915 (2015). [CrossRef] [PubMed] [Google Scholar]
- A. Garciadiaz et al., Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Reports 19 1189 (2017). [CrossRef] [PubMed] [Google Scholar]
- K. E. Pauken et al., Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160-1165 (2016). [CrossRef] [Google Scholar]
- D. S. Shin et al., Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discovery 7 188 (2016). [Google Scholar]
- H. F Stephen et al., Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A 100, 4712-4717 (2003). [CrossRef] [PubMed] [Google Scholar]
- A. Ribas et al., Phase 1 trial of monthly doses of the human anti-CTLA4 monoclonal antibody CP-675, 206 in patients with advanced melanoma. Journal of Clinical Oncology 23, 7524-7524 (2005). [CrossRef] [Google Scholar]
- F. Triebel,. et al., LAG-3, a novel lymphocyte activation gene closely related to CD4. Journal of Experimental Medicine 171, 1393-1405 (1990). [Google Scholar]
- B. Huard,., P. Prigent,., M. Tournier,., D. Bruniquel,., F. Triebel,. CD4/major histocompatibility complex class II interaction analyzed with CD4and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. European Journal of Immunology 25, 2718-2721 (2010). [CrossRef] [PubMed] [Google Scholar]
- C. T. Huang et al., Role of LAG-3 in Regulatory T Cells. Immunity 21, 503-513 (2004). [CrossRef] [PubMed] [Google Scholar]
- G. Nicola et al., Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nature Medicine 19, 739-746 (2013). [CrossRef] [PubMed] [Google Scholar]
- O. Tomohisa et al., CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proceedings of the National Academy of Sciences of the United States of America 106, 13974-13979 (2009). [CrossRef] [PubMed] [Google Scholar]
- E. Baixeras et al., Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. Journal of Experimental Medicine 176, 327-337 (1992). [Google Scholar]
- K. Malgorzata, K. Jan, C. S. Giuseppina, K. Klaus, Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. European Journal of Immunology 35, 2081-2088 (2005). [CrossRef] [PubMed] [Google Scholar]
- C. J. Workman et al., LAG-3 regulates plasmacytoid dendritic cell homeostasis. Journal of immunology (Baltimore, Md. : 1950) 182, 1885-1891 (2009). [CrossRef] [PubMed] [Google Scholar]
- B. Joonbeom, L. Suk Jun, P. Chung-Gyu, L. Young Sik, C. Taehoon, Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. Journal of Immunology 193, 3101-3112 (2014). [CrossRef] [Google Scholar]
- S. R. Woo et al., Differential subcellular localization of the regulatory T-cell protein LAG-3 and the coreceptor CD4. European Journal of Immunology 40, 1768-1777 (2010). [CrossRef] [PubMed] [Google Scholar]
- L. Nianyu et al., Metalloproteases regulate T-cell proliferation and effector function via LAG-3. Embo Journal 26, 494-504 (2014). [Google Scholar]
- J. F. Grosso et al., Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. Journal of Immunology 182, 6659-6669 (2009). [CrossRef] [Google Scholar]
- B. Huard, P. Prigent, F. Pages, D. Bruniquel, F. Triebel, T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses following LAG-3 binding. Eur J Immunol 26, 1180-1186 (1996). [CrossRef] [PubMed] [Google Scholar]
- B. Huard, P. Prigent, M. Tournier, D. Bruniquel, F. Triebel, CD4/major histocompatibility complex class II interaction analyzed with CD4and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol 25, 2718-2721 (1995). [Google Scholar]
- V. Demchev et al., Targeted deletion of fibrinogen like protein 1 reveals a novel role in energy substrate utilization. Plos One 8, e58084 (2013). [CrossRef] [PubMed] [Google Scholar]
- H. Hara et al., Molecular cloning and functional expression analysis of a cDNA for human hepassocin, a liver-specific protein with hepatocyte mitogenic activity. BBA Gene Structure and Expression 1520, 45-53 (2001). [CrossRef] [Google Scholar]
- L. Chang-Yan et al., Recombinant human hepassocin stimulates proliferation of hepatocytes in vivo and improves survival in rats with fulminant hepatic failure. Gut 59 817 (2010). [CrossRef] [PubMed] [Google Scholar]
- Z. Liu, C. Ukomadu, Fibrinogen–like–protein 1, a hepatocyte derived protein is an acute phase reactant. Biochemical & Biophysical Research Communications 365, 729-734 (2008). [CrossRef] [Google Scholar]
- T. Yamamoto et al., Molecular Cloning and Initial Characterization of a Novel Fibrinogen-Related Gene, HFREP-1. Biochemical & Biophysical Research Communications 193, 681-687 (1993). [CrossRef] [Google Scholar]
- J. Yan et al., Cloning and characterization of a mouse liver-specific gene mfrep-1, up-regulated in liver regeneration. Cell research 12, 353-361 (2002). [CrossRef] [PubMed] [Google Scholar]
- I. Le Mercier, J. L. Lines, R. J. Noelle, Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators. Frontiers in Immunology 6, (2015). [CrossRef] [Google Scholar]
- C. Krupka et al., Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 30, 484-491 (2016). [CrossRef] [PubMed] [Google Scholar]
- A. Ribas, J. D. Wolchok, Cancer immunotherapy using checkpoint blockade. Science 359, 1350-1355 (2018). [CrossRef] [Google Scholar]
- H. Wang et al., Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. Journal of hematology & oncology 12 59 (2019). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.