Open Access
Issue
E3S Web Conf.
Volume 131, 2019
2nd International Conference on Biofilms (ChinaBiofilms 2019)
Article Number 01067
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/201913101067
Published online 19 November 2019
  1. J. L. Chen, J. Li, Z. Z. Zhang, S. N. Ni, Long-term groundwater variations in Northwest India from satellite gravity measurements. Glob. Planet. Change. 116 130 (2014). [CrossRef] [Google Scholar]
  2. B. D. Tapley, B. Srinivas, J. C. Ries, P. F. Thompson, M. M. Watkins, GRACE measurements of mass variability in the Earth system. Science 305 503 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  3. F. W. Landerer, S. C. Swenson, Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 48 11 (2012). [CrossRef] [Google Scholar]
  4. B. R. Scanlon, Z. Zhang, H. Save, A. Y. Sun, H. Muller Schmied, L. P. H. van Beek, D. N. Wiese, Y. Wada, D. Long, R. C. Reedy, L. Longuevergne, P. Doll, M. F. P. Bierkens, Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. U. S. A. 115, E1080 (2018). [CrossRef] [PubMed] [Google Scholar]
  5. M. Rodell, J. Chen, H. Kato, J. S. Famiglietti, J. Nigro, C. R. Wilson, Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 15 159 (2006). [CrossRef] [Google Scholar]
  6. W. Feng, M. Zhong, J. M. Lemoine, R. Biancale, H. T. Hsu, J. Xia, Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49 2110 (2013). [CrossRef] [Google Scholar]
  7. F. Frappart, F. Papa, A. Guntner, J. Tomasella, J. Pfeffer, G. Ramillien, T. Emilio, J. Schietti, L. Seoane, J. D. Carvalho, D. M. Moreira, M. P. Bonnet, F. Seyler, The spatio-temporal variability of groundwater storage in the Amazon River Basin. Adv. Water Resour. 124 41 (2019). [CrossRef] [Google Scholar]
  8. E. A. Kowalczyk, L. Stevens, R. M. Law, M. Dix, Y. P. Wang, I. N. Harman, K. Haynes, J. Srbinovsky, B. Pak, T. Ziehn, The land surface model component of ACCESS: description and impact on the simulated surface climatology. Aust. Meteorol. Oceanogr. J. 63 65 (2013). [CrossRef] [Google Scholar]
  9. Y. P. Wang, E. Kowalczyk, R. Leuning, G. Abramowitz, M. R. Raupach, B. Pak, E. van Gorsel, A. Luhar, Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. J. Geophys. Res.-Biogeosci. 116 18 (2011). [Google Scholar]
  10. H. Q. Zhang, B. Pak, Y. P. Wang, X. Y. Zhou, Y. Q. Zhang, L. Zhang, Evaluating Surface Water Cycle Simulated by the Australian Community Land Surface Model (CABLE) across Different Spatial and Temporal Domains. J. Hydrometeorol. 14 1119 (2013). [CrossRef] [Google Scholar]
  11. N. Tangdamrongsub, S. C. Han, M. Decker, I. Y. Yeo, H. Kim, On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia. Hydrol. Earth Syst. Sci. 22 1811 (2018). [CrossRef] [Google Scholar]
  12. M. Leblanc, S. Tweed, G. Ramillien, P. Tregoning, F. Frappart, A. Fakes, I. Cartwright, Groundwater change in the Murray basin from long-term in-situ monitoring and GRACE estimates. CRC.Press., (2012). [Google Scholar]
  13. M. Schumacher, E. Forootan, A. van Dijk, H. Mueller Schmied, R. S. Crosbie, J. Kusche, P. Doll, Improving drought simulations within the Murray-Darling Basin by combined calibrationyassimilation of GRACE data into the WaterGAP Global Hydrology Model. Remote Sens. Environ. 204 212 (2018). [CrossRef] [Google Scholar]
  14. H. Save, S. Bettadpur, B. D. Tapley, High-resolution CSR GRACE RL05 mascons. J. Geophys. Res.-Solid Earth 121 7547 (2016). [CrossRef] [Google Scholar]
  15. B. R. Scanlon, Z. Zhang, H. Save, D. N. Wiese, F. W. Landerer, D. Long, L. Longuevergne, J. Chen, Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 52 9412 (2016). [CrossRef] [Google Scholar]
  16. A. M. Ukkola, A. J. Pitman, M. Decker, M. G. De Kauwe, G. Abramowitz, J. Kala, Y. P. Wang, Modelling evapotranspiration during precipitation deficits: identifying critical processes in a land surface model. Hydrol. Earth Syst. Sci. 20 2403 (2016). [CrossRef] [Google Scholar]
  17. M. Decker, Development and evaluation of a new soil moisture and runoff parameterization for the CABLE LSM including subgrid-scale processes. J. Adv. Model. Earth Syst. 7 1788 (2015). [CrossRef] [Google Scholar]
  18. M. Rodell, P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C. J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, D. Toll, The Global Land Data Assimilation System. BAMS. 85 381 (2004). [CrossRef] [Google Scholar]
  19. P. Yang, J. Xia, C. S. Zhan, Y. F. Qiao, Y. L. Wang, Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Sci. Total Environ. 595 218 (2017). [CrossRef] [PubMed] [Google Scholar]
  20. A. S. Richey, B. F. Thomas, M. H. Lo, J. T. Reager, J. S. Famiglietti, K. Voss, S. Swenson, M. Rodell, Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51 5217 (2015). [CrossRef] [PubMed] [Google Scholar]
  21. P. Moore, S. D. P. Williams, Integration of altimetric lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003-2011. Water Resour. Res. 50 9696 (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.