Open Access
Issue
E3S Web Conf.
Volume 136, 2019
2019 International Conference on Building Energy Conservation, Thermal Safety and Environmental Pollution Control (ICBTE 2019)
Article Number 06028
Number of page(s) 3
Section Monitoring and Treatment of Water Pollution
DOI https://doi.org/10.1051/e3sconf/201913606028
Published online 10 December 2019
  1. Agarwal A, Ng W J, Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9):1175-1180. [CrossRef] [PubMed] [Google Scholar]
  2. Burris V, Little J. Bubble dynamics and oxygen transfer in a hypolimnetic aerator[J]. Water Science & Technology, 1998, 37(2):293-300. [CrossRef] [Google Scholar]
  3. Takahashi M, Kawamura T, Yamamoto Y, et al. Effect of Shrinking Microbubble on Gas Hydrate Formation[J]. The Journal of Physical Chemistry B, 2003, 107(10):2171-2173. [Google Scholar]
  4. Ushikubo F Y, Furukawa T, Nakagawa R, et al. Evidence of the existence and the stability of nano-bubbles in water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361(1-3):31-37. [CrossRef] [Google Scholar]
  5. Heng-Zhen L I, Li-Ming H U, Hong-Bo X. Application of micro-nano bubble technology in remediation of polluted groundwater[J]. Chinese Journal of Geotechnical Engineering, 2015, 37:115-120. [Google Scholar]
  6. Li H, Hu L, Song D, et al. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation[J]. International Journal of Environmental Research and Public Health, 2013, 11(1):473-486. [CrossRef] [PubMed] [Google Scholar]
  7. Li H, Hu L, Song D, et al. Characteristics of Micro-Nano Bubbles and Potential Application in Groundwater Bioremediation[J]. Water Environment Research, 2014, 86(9):844-851. [CrossRef] [Google Scholar]
  8. Hu L, Xia Z. Application of Ozone Micro-Nano-Bubbles to Groundwater Remediation[J]. Journal of Hazardous Materials, 2017, 342. [Google Scholar]
  9. Guet S, Ooms G. FLUID MECHANICAL ASPECTS OF THE GAS-LIFT TECHNIQUE[J]. Annual Review of Fluid Mechanics, 2006, 38(1):225-249. [Google Scholar]
  10. Xiaohui D, Jingyu X, Yingxiang W, et al. Research on the technology of oil removal by dynamic state micro-bubbles flotation[J]. Industrial Water Treatment, 2011, 31(4):89-90. [Google Scholar]
  11. Liu S. Effect of Micro-Bubbles on Coagulation Floation Process of Dyeing Wastewater[J]. Separation Purification Tech. 2010, 71. [Google Scholar]
  12. Perkowski J, Kos L, Ledakowicz S. Application of Ozone in Textile Wastewater Treatment[J]. Ozone Science and Engineering, 1996, 18(1):73-85. [CrossRef] [Google Scholar]
  13. Chu L B, Yan S T, Xing X H, et al. Enhanced sludge solubilization by microbubble ozonation[J]. Chemosphere, 2008, 72(2):0-212. [Google Scholar]
  14. Chu L B, Xing X H, Yu A F, et al. Enhanced treatment of practical textile wastewater by microbubble ozonation[J]. Process Safety & Environmental Protection, 2008, 86(5):389-393. [CrossRef] [Google Scholar]
  15. Liu S, Wang Q, Sun T, et al. The effect of different types of micro‐bubbles on the performance of the coagulation flotation process for coke waste‐water[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(2):206-215. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.