Open Access
Issue |
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/201913701008 | |
Published online | 16 December 2019 |
- Rosic B., DENTON J.D., Control of Shroud Leakage Loss by Reducing Circumferential Mixing, J Turbomach, Vol. 130, (2), (2008). [Google Scholar]
- Chupp R.E., Hendricks R.C., Lattime S.B., Steinetz B.M., Sealing in Turbomachinery , NASA Technical Report, NASA/TM-2006-214341, (2006). [Google Scholar]
- Steinetz B.M., Hendricks R.C., Braun M.J., Turbomachine Sealing and Secondary Flows, Part 1—Review of Sealing Performance, Customer, Engine Designer, and Research Issues, NASA Technical Report, NASA/TM-2004-211991/Part1, (2004). [Google Scholar]
- Kong X., liu G., Liu Y., Zheng L., Experimental testing for the influences of rotation and tip clearance on the labyrinth seal in a compressor stator well, Aerosp Sci Technol, Vol. 71 pp. 556–567, (2017). [Google Scholar]
- ZHANG X., li W., zhang X., wang X., Zhu Y., Experimental and Numerical Investigations of Closed Radial Inflow Turbine With Labyrinth Seals , J Eng Gas Turbines Power, Vol. 140(10), (2018). [Google Scholar]
- Murata K., Kamishita M., Matsumoto K., Kawashita R., Iwasaki M., Tokimasa Y., Validation of CFD Analysis Method for Seal Dynamic Coefficients With Various Labyrinth Seal Types , Proc ASME Turbo Expo 2018 Power Land, Sea Air, GT2018- 75251, pp. 1–10, (2018). [Google Scholar]
- Elebiary K., Jin H., Untaroiu A., Hayrapetiau V., Fu G., The Effects of Fluid Preswirl and Swirl Brakes Design on the Performance of Labyrinth Seals, J Eng Gas Turbines Power, Vol. 140(8), (2018). [Google Scholar]
- Wasilczuk F., Kaczynski P., Szwaba R., Marugi K., Flaszynski P., Doerffer P., Leakage flow analysis in the gas turbine shroud gap, AircrEng Aerosp Technol, (2018). [Google Scholar]
- Alizadeh M., Nikkhahi B., Farahani A.S., Fathi A., Numerical study on the effect of geometrical parameters on the labyrinth-honeycomb seal performance, Proc Inst Mech Eng Part G J Aerosp Eng, pp. 1–12 , (2017). [Google Scholar]
- Lin Z., Wang X., Yuan X., Shibukawa N., Noguchi L., Investigation and improvement of the staggered labyrinth seal, Chinese J Mech Eng, Vol. 28, pp. 402–408 , (2015). [CrossRef] [Google Scholar]
- Cangioli F., Pennacchi P., Nettis P., Ciuchicchi L., Design and Analysis of CFD Experiments for the Development of Bulk-Flow Model for Staggered Labyrinth Seal, Int J Rotating Mach, Vol. 2018, pp. 1–16(2018). [CrossRef] [Google Scholar]
- Zimmermann H., Wolff K.H., Comparison Between Empirical and Numerical Labyrinth Flow Correlations, Proc ASME 1987 International Gas Turbine Conference and Exhibition, 1987, pp. 1–6 , (1987). [Google Scholar]
- Zimmermann H., Wolff K.H., Air System Correlations Part 1: Labyrinth Seals.Proc Int Gas Turbine Aeroengine Congr Exhib, 98-GT-206, (1998). [Google Scholar]
- Stocker H.L., Cox D.M., Holle G.F., Aerodynamic Performance of Conventional And Advanced Design Labyrinth Seals With Solid-Smooth Abradable And Honeycomb Lands, NASA Technical Report, (1977). [Google Scholar]
- Choi D.C., Rhode D.L., Development of a 2-D CFD Approach for Computing 3-D Honeycomb Labyrinth Leakage, Proc ASME Turbo Expo 2003 Power Land, Sea Air, GT2003-38238, pp. 965–975.(2003). [Google Scholar]
- Wittig S., Schelling U., Kim S., Jacobsen K., Numerical Predictions and Measurements of Discharge Coefficients in Labyrinth Seals, Proc ASME 1987 International Gas Turbine Conference and Exhibition, 87-GT-188, (1987). [Google Scholar]
- Tyacke J.C., Jefferson-Loveday R., Tucker P, G., Application of LES to labyrinth seals, Proc 20th AIAA Comput Fluid Dyn Conf, pp. 1–24, (2011). [Google Scholar]
- Tyacke J., Jefferson-Loveday R., Tucker P.G., On the application of LES to seal geometries, Flow, Turbul Combust, Vol. 91(4), pp. 827–848, (2013). [CrossRef] [Google Scholar]
- Wroblewski W., Dykas S., Bochon K., Rulik S., Optimization of the rotor tip seal with honeycomb land in a gas turbine, 9th Eur Conf Turbomach Fluid Dyn Thermodyn ETC 2011 - Conf Proc, pp. 1–13.(2011). [Google Scholar]
- Fr^czek D., Bochon K., Wroblewski W., Influence of Honeycomb Land Geometry on Seal Performance, Proc ASME Turbo Expo 2016 Power Land, Sea Air, GT2016-57569, pp. 1–11, (2011). [Google Scholar]
- Rulik S., Wroblewski W., Fraczek D., Metamodel- Based Optimization of the Labyrinth Seal , Arch Mech Eng, Vol. 64, pp. 75–91, (2017). [CrossRef] [Google Scholar]
- Wroblewski W., Fraczek D., Marugi K., Leakage reduction by optimisation of the straight - through labyrinth seal with a honeycomb and alternative land configurations, Int J Heat Mass Transf, Vol. 126, pp. 725–739, (2018). [Google Scholar]
- Szymanski A., Bochon K., Wroblewski W., Marugi K., Dykas S., fRACZEK D., Optimization of the Straight-Through Labyrinth Seal With a Smooth Land, J Eng Gas Turbines Power , Vol. 140(12), pp. 122503–122511, (2018). [CrossRef] [Google Scholar]
- Fraczek D., Wroblewski W., Validation of numerical models for flow simulation in labyrinth seals, J Phys Conf Ser, vol760, (2016). [Google Scholar]
- Morgan N.R., Wood H.G., Untaroiu A., Numerical Optimization of Leakage By Multifactor Regression of Trapezoidal, Proc ASME Turbo Expo 2015 Power Land, Sea Air, GT2015-43794, pp. 1–10, (2015). [Google Scholar]
- Waschka W., Wittig S., Kim S., Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals, J Turbomach, Vol. 114, (2), pp. 462–468, (1992). [Google Scholar]
- Paolillo R., Moore s., Cloud D., Glahn J.A., Impact of Rotational Speed on the Discharge Characteristic of Stepped Labyrinth Seals, Proc ASME Turbo Expo 2007 Power Land, Sea Air, GT2007-28248, pp. 1291–1298, (2007). [CrossRef] [Google Scholar]
- Schramm V., Willenborg K., Kim S., Wittig S., Influence of a Honeycomb Facing on the Flow Through a Stepped Labyrinth Seal, J Eng Gas Turbines Power Vol. 124(1), pp140–146, (2002). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.