Open Access
Issue
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
Article Number 01023
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/201913701023
Published online 16 December 2019
  1. Hyrzyński R., Badur J., Jaroszewska M., Ziółkowski P., Gotzman S., Froissart M., Impact of wind turbines on climate, Energetyka, Vol. 776, No 2, pp. 77-83, (2019), [in Polish]. [Google Scholar]
  2. The European Council. European Council, 23 24.10.2014. Climate and Energy Policy Framework Up to 2030, (2014). https://www.consilium.europa.eu/pl/meetings/european-council/2014/10/23-24/. [Google Scholar]
  3. Klonowicz P., Witanowski L., Jędrzejewski L., Suchocki T., Surwilo J., Stepniak D., Wstepna analiza potencjalu zasobnikó w energii typu UWCAES w Zatoce Gdańskiej, Rynek Energii, Vol. 124, No 3, pp. 100-107, (2016). [Google Scholar]
  4. Badur J., Hyrzyński R., Kraszewski B., Ziólkowski P., Dudda W., Analysis of electricity generation variability in the first five months of 2019, with particular emphasis on wind energy generation, Nowa Energia Vol. 68, No 3, pp. 40-45, (2019), [in Polish]. [Google Scholar]
  5. Wasiak I., Elektroenergetyka w zarysie. Przesyl i rozdzial energii elektrycznej, Politechnika Lódzka, Lódź, (2010). [Google Scholar]
  6. Polskie Sieci Elektroenergetyczne SA. System data, Pr KSE 2019. https://www.pse.pl/dane-svstemowe/praca-kse/informacje-ogolne/opis-systemu, [in Polish]. [Google Scholar]
  7. Zajczyk R., Regulacja częstotliwości i mocy w systemie elektroenergetycznym, Politechnika Gdańska, Gdańsk, (2002). [Google Scholar]
  8. Polish Wind Energy Association; Lower Silesian Institute of Energy Studies. Cooperation of conventional coal and large scale RES sources, (2019), [in Polish]. [Google Scholar]
  9. Li B., DeCarolis JF., A techno-economic assessment of offshore wind coupled to offshore compressed air energy storage, Appl Energy, Vol. 155, pp. 315-322, (2015). [Google Scholar]
  10. Cheung BC., Carriveau R., Ting DSK., Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm, Energy, Vol. 74, pp. 396-404, (2014). [CrossRef] [Google Scholar]
  11. Salvini C., Techno-Economic Analysis of Small Size Second Generation CAES System, Energy Procedia, Vol. 82, pp. 782-788, (2015). [Google Scholar]
  12. Iglesias A., Favrat D., Innovative isothermal oil-free co-rotating scroll compressor-expander for energy storage with first expander tests, Energy Convers Manag, Vol. 85:565-572, (2014). [Google Scholar]
  13. Wolf D., Budt M., LTA-CAES - A low-temperature approach to Adiabatic Compressed Air Energy Storage, Appl Energy, Vol. 125, pp.158-164, (2014). [Google Scholar]
  14. Hartmann N., Vöhringer O., Kruck C., Eltrop L., Simulation and analysis of different adiabatic CAES plant, Appl Energy, Vol. 93, pp. 541-548, (2012). [Google Scholar]
  15. Krawczyk P, Szablowski L, Karellas S, Kakaras E, Badyda K., Comparative energy and exergy analysis of compressed air and liquid air energy storage systems, Proceedings of ECOS 2016 - the 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 19-23, 2016, Portorož, Slovenia. [Google Scholar]
  16. Liu W., Liu L., Zhou L., Huang J., Zhang Y., Xu G., Yang Y., Analysis and Optimization of a Compressed Air Energy Storage—Combined Cycle System, Entropy, Vol. 16, pp. 3103-3120, (2014). [CrossRef] [Google Scholar]
  17. Badyda K., Milewski J., Thermodynamic analysis of compressed air energy storage working conditions, Arch Energ, Vol. 42, pp. 53-68, (2012). [Google Scholar]
  18. Szablowski L, Krawczyk P, Badyda K, Karellas S, Kakaras E, Bujalski W., Energy and exergy analysis of adiabatic compressed air energy storage system. Energy, Vol. 138, pp. 12-18, (2017). [CrossRef] [Google Scholar]
  19. Badur J., Ziólkowski P., Slawiński D., Kornet S., An approach for estimation of water wall degradation within pulverized-coal boilers, Energy, Vol. 92, pp. 142-152, (2015). [CrossRef] [Google Scholar]
  20. Badur J., Numerical modelling of sustainable combustion in gas turbines, IFFM Publishers, Gdańsk, 2003. [Google Scholar]
  21. Lous M., Larroque F., Dupuy A., Moignard A., Thermal performance of a deep borehole heat exchanger: Insights from a synthetic coupled heat and flow model Geothermics Vol, 57, pp. 157-172, (2015). [Google Scholar]
  22. Hanuszkiewicz-Drapala M., Skladzień J., Heating system with vapour compressor heat pump and vertical U-tube ground heat exchanger, Archives of thermodynamics, Vol. 31, No. 4, pp. 93-110, (2010). [CrossRef] [Google Scholar]
  23. Naldi C., Zanchini E., Full-Time-Scale Fluid-to- Ground Thermal Response of a Borefield with Uniform Fluid Temperature, Energies, Vol. 12, 3750; doi:10.3390/en12193750, (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.