Open Access
Issue |
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
|
|
---|---|---|
Article Number | 01045 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/201913701045 | |
Published online | 16 December 2019 |
- Lloyd’s Register, Future IMO and ILO Legislation, (2019). [Google Scholar]
- MAN B&W, MAN 51/60DF Project Guide, (2017). [Google Scholar]
- Wu Sh.-Y., Li Ch., Xiao L., Li Y.-R., Liu Ch., The role of outlet temperature of flue gas in organic Rankine cycle considering low temperature corrosion, Journal of Mechanical Science and Technology, Vol. 12, pp. 5213-5219, (2014). [Google Scholar]
- International Gas Union, World LNG Report, (2019). [Google Scholar]
- DNV-GL, LNG fueled fleet statistics, (2019), available at: http.://afi.dnvgl.com/Statistics, (accessed 22.09.2019). [Google Scholar]
- Attah E.E., Bucknall R., An analysis of the energy efficiency of LNG ships powering options using the EEDI, Ocean Engineering, Vol. 110, pp. 62-74, (2015). [CrossRef] [Google Scholar]
- Stenersen D., Thonstad O., GHG and NOx emissions from gas fueled engines, SINTEF Ocean AS, (2017). [Google Scholar]
- Adamkiewicz A., Michalski R., Zeńczak W., Wybrane problemy technologii konwersji energii w okrętowych systemach energetycznych, Kaprint, (2012). [Google Scholar]
- Mondejar M.E., Andreasen J.G., Pierobon L., Larsen U., Thern M., Haglind F., A review of the use of organic Rankine cycle power systems for maritime applications, Renewable and Sustainable Energy Reviews, Vol. 91, pp. 126-15, (2018). [CrossRef] [Google Scholar]
- Singh D.V., Pedersen E., A review of waste heat recovery technologies for maritime applications. Energy Conversion and Managment, Vol. 111, pp. 315-328, (2016). [CrossRef] [Google Scholar]
- Haglind F., Mondejar M.E., Andreasen J.G., Pierobon L., Meroni A., Organic Rankine cycle unit for waste heat recovery on ships (Pilot ORC), Danish Technical University, (2017). [Google Scholar]
- CIMAC, Impact of Gas Quality on Gas Engine Performance, (2015). [Google Scholar]
- The European Association of Internal Combustion Engine Manufacturers, Total Sulphur Levels in Natural Gas with Special Consideration of IC Engines, (2012). [Google Scholar]
- Szarawara J., Termodynamika chemiczna, Wydawnictwa Naukowo-Techniczne, (1985). [Google Scholar]
- Verhoff F.H., Banchero J.T., Predicting dew points of flue gases, Chemical Engineering Progress, Vol. 8, pp. 71-72, (1974). [Google Scholar]
- Cordtz R., Schramm J., Rabe R.: Investigating SO3 formation from the Combustion of Heavy Fuel Oil in a Four-Stroke Medium-Speed Test Engine, Energy & Fuels, Vol. 10, pp. 6279-6286, (2013). [CrossRef] [Google Scholar]
- Burcat A., Ruscic B., Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with updates from Active Thermochemical Tables, Argonne National Laboratory, (2005). [Google Scholar]
- Xiong Y., Tan H., Wang Y., W., Mikulčić H., Duić N., Pilot-scale study on water and latent heat recovery from flue gas using fluorine plastic heat exchangers. Journal of Cleaner Production, Vol. 161, pp. 1416-1422, (2017). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.