Open Access
Issue
E3S Web Conf.
Volume 140, 2019
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2019)
Article Number 06001
Number of page(s) 8
Section Fluid Mechanics
DOI https://doi.org/10.1051/e3sconf/201914006001
Published online 18 December 2019
  1. D. Burlet-Vienney, Y. Chinniah, A. Bahlou, B. Roberge, Occupational safety during interventions in confined spaces, Safety Science 79, 19-28 (2015) [Google Scholar]
  2. P. Ng, T.B. Hendry-Hofer, A. Witeof, M. Brenner, S. Mahon, G. Boss, P. Haouzi, V. Bebarta, Hydrogen Sulfide Toxicity: Mechanism of Action, Clinical Presentation, and Countermeasure Development, Journal of Medical Toxicology 15, 1-8 (2019) [CrossRef] [Google Scholar]
  3. S. Chauhan, Hydrogen Sulfide (H2S) Poison Gas to Signaling Molecule in Regulation of Human Biology, Journal of pharmacology & clinical research 5, 1-12 (2018) [CrossRef] [Google Scholar]
  4. E. Voskresenskaya, L. Vorona-Slivinskaya, V. Snetkov, A. Ponomarenko, Ecological and economic mechanism for the formation of environmental measures in the gas extraction constructions, E3S Web of Conferences 91 (2019) [Google Scholar]
  5. M. Bolsunovskaya, A. Leksashov, A. Loginova, S. Shirokova, Hardware-software geo-information system for positioning objects, E3S Web of Conferences 91 (2019) [Google Scholar]
  6. DIN EN 752:2017. Drain and sewer systems outside buildings Sewer system management 100 (2017) [Google Scholar]
  7. BS EN 752:2017 Drain and sewer systems outside buildings sewer system management 130 (2017) [Google Scholar]
  8. L. Xuan, L. O’Moore, S. Yarong, P. Bond, Y. Zhiguo, W. Simeon, L. Hanzic, J. Guangmin, The rapid chemically induced corrosion of concrete sewers at high H2S concentration, Water Research 162, 95-104 (2019) [CrossRef] [PubMed] [Google Scholar]
  9. J. Vollertsen, A. Nielsen, H. Jensen, T. Wium-Andersen, T. Hvitved-Jacobsen, Corrosion of concrete sewers The kinetics of hydrogen sulfide oxidation, The Science of the total environment 394, 162-170 (2008) [CrossRef] [PubMed] [Google Scholar]
  10. E. Kuliczkowska, A. Parka, The structural integrity of corroded concrete sewers, Engineering Failure Analysis 104, 409-421 (2019) [Google Scholar]
  11. X. Sun, G. Jiang, B. Philip, K. Jurg, Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads, Water Research 81, 84-91 (2015) [CrossRef] [PubMed] [Google Scholar]
  12. C. Lucie, F. Springer, G. Lipeme Kouyi, P. Buffière, A review of sulfide emissions in sewer networks: Overall approach and systemic modelling, Water Science and Technology 73, 1231-1242 (2015) [Google Scholar]
  13. C. Lucie, F. Springer, G. Lipeme Kouyi, P. Buffière, Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers, Water Science and Technology 75, 1529-1538 (2017) [CrossRef] [Google Scholar]
  14. C. Lucie, F. Springer, G. Lipeme Kouyi, P. Buffière, Sulfide emissions in sewer networks: Focus on liquid to gas mass transfer coefficient, Water Science & Technology 75, 1899-1908 (2017) [CrossRef] [Google Scholar]
  15. K. Teuber, T. Broecker, Using computational fluid dynamics to describe H2S mass transfer across the water–air interface in sewers, Water Science & Technology 79, 1934-1946 (2019) [CrossRef] [Google Scholar]
  16. B. Wang, E. Sivret, Parcsi, G., X. Wang, N. Le, S. Kenny, H. Bustamante, R. Stuetz, Is H2S a suitable process indicator for odour abatement performance of sewer odours? Water science and technology: a journal of the International Association on Water Pollution Research 69, 92-98 (2014) [CrossRef] [Google Scholar]
  17. J. Vollertsen, N. Revilla, T. Hvitved-Jacobsen, H. Asbjørn, Modeling Odors and Hydrogen Sulfide in the Sewers of San Francisco, Proceedings of the Water Environment Federation 1-11 (2014) [CrossRef] [Google Scholar]
  18. E. Sivret, R. Stuetz, Sewer odour abatement monitoring An Australian survey. Water science and technology: a journal of the International Association on Water Pollution Research 66, 1716-1721 (2012) [CrossRef] [Google Scholar]
  19. E. Sivret, B. Wang, G. Parcsi, S. Kenny, H. Bustamante, R. Stuetz, Beyond H2S: Applying Gas Chromatography to Characterise Sewer Odour Emissions, Proceedings of the Water Environment Federation 60-73 (2012) [CrossRef] [Google Scholar]
  20. E. Eijo-Rio, A. Petit-Boix, G. Villalba, M. Suárez-Ojeda, D. Marín, M. Amores, X. Aldea, J. Rieradevall, X. Gabarrell Durany, Municipal sewer networks as sources of nitrous oxide, methane and hydrogen sulphide emissions: A review and case studies, Journal of Environmental Chemical Engineering 3, 2084-2094 (2015) [Google Scholar]
  21. R. Ventura Matos, F. Ferreira, J. Saldanha Matos, Influence of Intermittence and Pressure Differentials in Hydrogen Sulfide Concentration in a Gravity Sewer, Water 11, 1780 (2019) [Google Scholar]
  22. Z. Zuo, J. Chang, Z. Lu, M. Wang, Y. Lin, M. Zheng, D. Zhu, T. Yu, Y.C. Liu, Hydrogen sulfide generation and emission in urban sanitary sewer in China: What factor plays the critical role? Environmental Science: Water Research & Technology 5, 839-848 (2019) [CrossRef] [Google Scholar]
  23. S. V. Fedorov, V. M. Vasil`ev, M. N. Klement’ev, Study of gas evolution in a sewer section. Water supply and sanitary technique 5, 54-59 (2019) [Google Scholar]
  24. G. Mannina, P. Calabrò, G. Viviani, Mathematical Modelling of In-Sewer Processes as a Tool for Sewer System Design. In: Mannina G. (eds) New Trends in Urban Drainage Modelling. UDM 2018. Green Energy and Technology. Springer, Cham (2019) [CrossRef] [Google Scholar]
  25. Y. Qian, D. Zhu, S. Edwini-Bonsu, Air Flow Modeling in a Prototype Sanitary Sewer System, Journal of Environmental Engineering (United States) 144 (2018) [Google Scholar]
  26. C. Yongsiri, T. Hvitved-Jacobsen, J. Vollertsen, N. Tanaka, Introducing the emission process of hydrogen sulfide to a sewer process model, Water Science and Technology 47, 85-92 (2003) [CrossRef] [Google Scholar]
  27. A. Nielsen, C. Yongsiri, T. Hvitved-Jacobsen, J. Vollertsen, Simulation of sulfidebuildup in wastewater and atmosphere of sewer networks, Water Science and Technology 52, 201-208 (2005) [CrossRef] [Google Scholar]
  28. M. C. Almeida, D. Butler, J. W. Davies, Modelling in-sewer changes in wastewater quality under aerobic conditions, Water Science and Technology 39, 63-71 (1999) [CrossRef] [Google Scholar]
  29. Y. Galerkin, K. Soldatova, Analysis of gas motion in the clearance between the cover disk and the casing of centrifugal compressor stage, Chemical and Petroleum Engineering 43, 270-274 (2007) [CrossRef] [Google Scholar]
  30. E. Smirnov, Recent Progress in Numerical Simulation of Highly Three-Dimensional Turbulent Flows and Endwall Heat Transfer in Turbine Blade Cascades, Heat Transfer Research 42, 1-18 (2009) [Google Scholar]
  31. A. Pospelov, A. Zharkovskii, Effect of the Parameters of a Computational Model on the Prediction of Hydraulic Turbine Characteristics, Power Technology and Engineering 49, 159-164 (2015) [CrossRef] [Google Scholar]
  32. K. Teuber, T. Broecker, S. Jaydev, M. Gebregziabher, M. Sielaff, D. Despot, D. Stephan, M. Barjenbruch, R. Hinkelmann, Multiphase CFD-Simulation of Transport Phenomena in Sewer Systems, New Trends in Urban Drainage Modelling. UDM 2018. Green Energy and Technology Springer, Cham (2019) [Google Scholar]
  33. M. Lavasani, R. Rahimi, M. Zivdar, M. Kalbassi, CFD Modeling to Predict Mass Transfer in Multicomponent Mixtures, Chemical Product and Process Modeling 10, 291302 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.