Open Access
Issue
E3S Web Conf.
Volume 145, 2020
2019 International Academic Exchange Conference on Science and Technology Innovation (IAECST 2019)
Article Number 01033
Number of page(s) 7
Section International Conference on Biotechnology and Food Science
DOI https://doi.org/10.1051/e3sconf/202014501033
Published online 06 February 2020
  1. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009. 10(1): p. 57-63. [CrossRef] [PubMed] [Google Scholar]
  2. Tang, F., et al., mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009. 6(5): p. 377-82. [CrossRef] [PubMed] [Google Scholar]
  3. Tang, F., et al., RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc, 2010. 5(3): p. 516-35. [CrossRef] [PubMed] [Google Scholar]
  4. Hwang, B., J.H. Lee, and D. Bang, Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med, 2018. 50(8): p. 96. [Google Scholar]
  5. Reizel, Y., et al., Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet, 2011. 7(7): p. e1002192. [Google Scholar]
  6. Zhang, K., et al., Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol, 2006. 24(6): p. 680-6. [CrossRef] [PubMed] [Google Scholar]
  7. Frumkin, D., et al., Amplification of multiple genomic loci from single cells isolated: ylaser micro-dissection of tissues. BMC Biotechnology, 2008. 8(1). [CrossRef] [PubMed] [Google Scholar]
  8. Yachida, S., et al., Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010. 467(7319): p. 1114-7. [Google Scholar]
  9. Stepanauskas, R. and M.E. Sieracki, Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci U S A, 2007. 104(21): p. 9052-7. [CrossRef] [PubMed] [Google Scholar]
  10. Brehm-Stecher, B.F. and E.A. Johnson, Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev, 2004. 68(3):p. 538-59, table of contents. [CrossRef] [PubMed] [Google Scholar]
  11. Julius, M.H., T. Masuda, and L.A. Herzenberg, Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proc Natl Acad Sci U S A, 1972. 69(7): p. 1934-8. [CrossRef] [PubMed] [Google Scholar]
  12. Macosko, E.Z., et al., Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015. 161(5): p. 12021214. [Google Scholar]
  13. Klein, Allon M., et al., Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell, 2015. 161(5): p. 1187-1201. [Google Scholar]
  14. Kolodziejczyk, A.A., et al., The technology and biology of single-cell RNA sequencing. Mol Cell, 58(4): p. (510-20). [Google Scholar]
  15. Kanter, I. and T. Kalisky, Single cell transcriptomics: methods and applications. Front Oncol, 2015. 5: p. 53. [CrossRef] [PubMed] [Google Scholar]
  16. Kurimoto, K., et al., An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res, 2006. 34(5): p. e42. [Google Scholar]
  17. Kurimoto, K., et al., Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc, 2007. 2(3): p. 739 52. [Google Scholar]
  18. Islam, S., et al., Characterization of the single-cell transcriptional landscape by highly multiplex RNA- seq. Genome Res, 2011. 21(7): p. 1160-7. [CrossRef] [PubMed] [Google Scholar]
  19. Ramskold, D., et al., Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology, 2012. 30(8): p. 777-782. [CrossRef] [PubMed] [Google Scholar]
  20. Picelli, S., et al., Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods, 2013. 10(11): p. 1096-1098. [CrossRef] [PubMed] [Google Scholar]
  21. Hashimshony, T., et al., CEL-Seq: single-cell RNA- Seq by multiplexed linear amplification. Cell Rep, 2012. 2(3): p. 666-73. [CrossRef] [PubMed] [Google Scholar]
  22. Hashimshony, T., et al., CEL-Seq2: sensitive highly- multiplexed single-cell RNA-Seq. Genome Biology, 2016. 17(1). [CrossRef] [PubMed] [Google Scholar]
  23. Hashimshony, T., et al., CEL-Seq2: sensitive highly- multiplexed single-cell RNA-Seq. Genome Biol, 17: p. 77. [CrossRef] [PubMed] [Google Scholar]
  24. Ziegenhain, C., et al., Comparative Analysis of Single-Cell RNA Sequencing Methods. Molecular Cell, 2017. 65(4): p. 631-643.e4. [Google Scholar]
  25. Kim, K.T., et al., Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol, 2015. 16: p. 127. [CrossRef] [PubMed] [Google Scholar]
  26. Xue, Z., et al., Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature, 2013. 500(7464): p. 593-7. [Google Scholar]
  27. Spaethling, J.M., et al., Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics. Cell Rep, 18 (3): p. 791-803. [CrossRef] [PubMed] [Google Scholar]
  28. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7. [Google Scholar]
  29. Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007. 448(7151): p. 318-24. [Google Scholar]
  30. Maherali, N., et al., Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007. 1(1): p. 55-70. [Google Scholar]
  31. Takahashi, K., et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 2007. 131(5): p. 861-872. [Google Scholar]
  32. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20. [Google Scholar]
  33. Liang, P., et al., Patient-Specific and Genome- Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome. J Am Coll Cardiol, 2016. 68(19): p. 2086-2096. [CrossRef] [PubMed] [Google Scholar]
  34. Al-Gharaibeh, A., et al., Induced Pluripotent Stem Cell-Derived Neural Stem Cell Transplantations Reduced Behavioral Deficits and Ameliorated Neuropathological Changes in YAC128 Mouse Model of Huntington’s Disease. Front Neurosci, 2017. 11: p. 628. [Google Scholar]
  35. Suh, M.R., et al., Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 2004. 270(2): p. 488-98. [CrossRef] [PubMed] [Google Scholar]
  36. Bar, M., et al., MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells, 2008. 26(10): p. 2496-505. [CrossRef] [PubMed] [Google Scholar]
  37. Morin, R.D., et al., Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res, 2008. 18(4): p. 610-21. [CrossRef] [PubMed] [Google Scholar]
  38. Laurent, L.C., et al., Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells, 2008. 26(6): p. 1506-16. [CrossRef] [PubMed] [Google Scholar]
  39. Jayawardena, T.M., et al., MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res, 2012. 110(11): p. 1465-73. [Google Scholar]
  40. Blanchard, J.W., et al., Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries. Nat Biotechnol, 2017. 35(10): p. 960-968. [CrossRef] [PubMed] [Google Scholar]
  41. Plath, K. and W.E. Lowry, Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet, 2011. 12(4): p. 253-65. [CrossRef] [PubMed] [Google Scholar]
  42. Brambrink, T., et al., Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2008. 2(2): p. 151-9. [Google Scholar]
  43. Takahashi, K. and S. Yamanaka, A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol, 2016. 17(3): p. 183-93. [CrossRef] [PubMed] [Google Scholar]
  44. Teshigawara, R., et al., Mechanism of human somatic reprogramming to iPS cell. Lab Invest, 97 (10): p. 1152-1157. [CrossRef] [PubMed] [Google Scholar]
  45. Gafni, O., et al., Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013. 504(7479): p. 282-6. [Google Scholar]
  46. Tesar, P.J., et al., New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007. 448(7150): p. 196-9. [Google Scholar]
  47. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6. [Google Scholar]
  48. Collier, A.J., et al., Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States. Cell Stem Cell, 2017. 20(6):p. 874-890 e7. [Google Scholar]
  49. Buganim, Y., D.A. Faddah, and R. Jaenisch, Mechanisms and models of somatic cell reprogramming. Nat Rev Genet, 2013. 14(6): p. 427-39. [CrossRef] [PubMed] [Google Scholar]
  50. Chung, K.M., et al., Single cell analysis reveals the stochastic phase of reprogramming to pluripotency is an ordered probabilistic process. PLoS One, 2014. 9(4): p. e95304. [Google Scholar]
  51. Xie, H., et al., Stepwise Reprogramming of B Cells into Macrophages. Cell, 2004. 117(5): p. 663-676. [Google Scholar]
  52. Di Stefano, B., et al., C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature, 2014. 506(7487): p. 235-9. [Google Scholar]
  53. Francesconi, M., et al., Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming. Elife, 2019. 8. [Google Scholar]
  54. Guo, L., et al., Resolving Cell Fate Decisions during Somatic Cell Reprogramming by Single-Cell RNA- Seq. Mol Cell, 2019. 73(4):p. 815-829 e7. [CrossRef] [PubMed] [Google Scholar]
  55. Schiebinger, G., et al., Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell, 2019. 176(4): p. 928-943 e22. [Google Scholar]
  56. Hou, P., et al., Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013. 341(6146): p. 651-4. [Google Scholar]
  57. Zhao, T., et al., Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming. Cell Stem Cell, 2018. 23(1):p. 31-45 e7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.