Open Access
E3S Web Conf.
Volume 145, 2020
2019 International Academic Exchange Conference on Science and Technology Innovation (IAECST 2019)
Article Number 02007
Number of page(s) 9
Section International Conference on New Energy Science and Environmental Engineering
Published online 06 February 2020
  1. Antipova, A., Wang, F., & Wilmot, C. (2011). Urban land uses, socio-demographic attributes and commuting: A multilevel modeling approach. Applied Geography, 31(3),1010-1018. [CrossRef] [Google Scholar]
  2. Bagrow, J. P., & Lin, Y.-R. (2012). Mesoscopic structure and social aspects of human mobility, 7(5),3-8. [Google Scholar]
  3. Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075),462-465. [Google Scholar]
  4. Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., & Ratti, C. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26, 301-313. [CrossRef] [Google Scholar]
  5. Calabrese, F., Ferrari, L., & Blondel, V. D. (2014). Urban Sensing Using Mobile Phone Network Data: A Survey of Research. ACM Computing Surveys, 47(2),1-20. [Google Scholar]
  6. Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., … Tatem, A.J . (2014). Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences, 111(45),15888-15893. [CrossRef] [Google Scholar]
  7. Ding, C., Wang, Y., Tang, T., Mishra, S., & Liu, C. (2018). Joint analysis of the spatial impacts of built environment on car ownership and travel mode choice. Transportation Research Part D: Transport and Environment, 60, 28-40. [Google Scholar]
  8. Garcia-Palomares, J. C., Salas-Olmedo, M. H., Moya-Gomez, B., Condego-Melhorado, A., & Gutierrez, J. (2018). City dynamics through Twitter: Relationships between land use and spatiotemporal demographics. Cities, 72(September 2017), 310-319. [Google Scholar]
  9. Gong, Y, Lin, Y, & Duan, Z. (2017). Exploring the spatiotemporal structure of dynamic urban space using metro smart card records. Computers, Environment and Urban Systems, 64, 169-183. [Google Scholar]
  10. Handy, S. L., Boarnet, M. G., Ewing, R., & Killingsworth, R. E. (2002). How the built environment affects physical activity: Views from urban planning. American Journal of Preventive Medicine, 23(2 SUPPL. 1), 64-73. [CrossRef] [PubMed] [Google Scholar]
  11. Jarv, O., Ahas, R., & Witlox, F. (2014). Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records. Transportation Research Part C: Emerging Technologies, 38, 122-135. [CrossRef] [Google Scholar]
  12. Jiang, S., Guan, W., Zhang, W., Chen, X., & Yang, L. (2017). Human mobility in space from three modes of public transportation. Physica A: Statistical Mechanics and Its Applications, 483, 227-238. [CrossRef] [Google Scholar]
  13. Jones, P., & Clarke, M. (1988). The significance and measurement of variability in travel behaviour. Transportation, 15(1-2), 65-87. [Google Scholar]
  14. Kim, Y L. (2018). Seoul’s Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality. Computers, Environment and Urban Systems, (October 2017), 0-1. [Google Scholar]
  15. Liu, X., Gong, L., Gong, Y, & Liu, Y. (2015). Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 43, 78-90. [Google Scholar]
  16. Marta C. Gonzalez, C. A. H. A.-L. B. (2008). Understanding individual human mobility patterns. Nature, 453 (5),779-782. [Google Scholar]
  17. Mendiola, L., & Gonzalez, P. (2018). Temporal dynamics in the relationship between land use factors and modal split in commuting: A local case study. Land Use Policy, 77(July 2017), 267-278. [Google Scholar]
  18. Mucelli Rezende Oliveira, E., Carneiro Viana, A., Sarraute, C., Brea, J., & Alvarez-Hamelin, I. (2016). On the regularity of human mobility. Pervasive and Mobile Computing, 33, 73-90. [Google Scholar]
  19. Park, K., Ewing, R., Scheer, B. C., & Tian, G. (2018). The impacts of built environment characteristics of rail station areas on household travel behavior. Cities, 74(August 2017), 277-283. [Google Scholar]
  20. Rein Ahas, Anto Aasa, Siiri Silm, M. T. (2010). Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C, 18(1),45-54. [CrossRef] [Google Scholar]
  21. Series, H., & Algebra, L. (n.d.). Singular Value Decomposition and Least Squares Solutions *, 420, 403-420. [Google Scholar]
  22. Song, C., Koren, T., Wang, P., & Barabasi, A. L. (2010). Modelling the scaling properties of human mobility. Nature Physics, 6(10),818-823. [Google Scholar]
  23. Thuillier, E., Moalic, L., Lamrous, S., & Caminada, A. (2018). Clustering Weekly Patterns of Human Mobility Through Mobile Phone Data. IEEE Transactions on Mobile Computing, 17(4),817-830. [Google Scholar]
  24. van Acker, V., & Witlox, F. (2011). Commuting trips within tours: How is commuting related to land use? Transportation, 38(3),465-486. [Google Scholar]
  25. Vergel-Tovar, C. E., & Rodriguez, D. A. (2018). The ridership performance of the built environment for BRT systems: Evidence from Latin America. Journal of Transport Geography, (July 2017), 0-1. [PubMed] [Google Scholar]
  26. Wang, D., & Lin, T. (2017). Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China. Transportation, 124. [Google Scholar]
  27. Wang, D., & Zhou, M. (2017). The built environment and travel behavior in urban China: A literature review. Transportation Research Part D: Transport and Environment, 52, 574-585. [Google Scholar]
  28. Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W., & Buckee, C. O. (2013). The impact of biases in mobile phone ownership on estimates of human mobility The impact of biases in mobile phone ownership on estimates of human mobility, (February). [Google Scholar]
  29. Yan, X.-Y., Wang, W.-X., Gao, Z.-Y., & Lai, Y.-C. (2017). Universal model of individual and population mobility on diverse spatial scales. Nature Communications, 8(1), 1639. [CrossRef] [PubMed] [Google Scholar]
  30. Yan, X. Y., Han, X. P., Wang, B. H., & Zhou, T. (2013). Diversity of individual mobility patterns and emergence of aggregated scaling laws. Scientific Reports, 3, 1-5. [Google Scholar]
  31. Yang, Z., Franz, M. L., Zhu, S., Mahmoudi, J., Nasri, A., & Zhang, L. (2018). Analysis of Washington, DC taxi demand using GPS and land-use data. Journal of Transport Geography, 66(January), 35-44. [Google Scholar]
  32. Yong, N., Ni, S., Shen, S., Chen, P., & Ji, X. (2018). Uncovering stable and occasional human mobility patterns: A case study of the Beijing subway. Physica A: Statistical Mechanics and Its Applications, 492, 28-38. [CrossRef] [Google Scholar]
  33. Zhang, D., Huang, J., Li, Y., Zhang, F., Xu, C., & He, T. (2014). Exploring human mobility with multisource data at extremely large metropolitan scales. Proceedings of the 20th Annual International Conference on Mobile Computing and Networking - MobiCom ’14, 201-212. [Google Scholar]
  34. Zhang, D., Zhao, J., Zhang, F., & He, T. (2015). coMobile: Real-time Human Mobility Modeling at Urban Scale Using Multi-View Learning. Proceedings of the 23 rd SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS ’15, 1-10. [Google Scholar]
  35. Zhang, M., & Zhao, P. (2017). The impact of land-use mix on residents’ travel energy consumption: New evidence from Beijing. Transportation Research Part D: Transport and Environment, 57(October), 224236. [Google Scholar]
  36. Zhou, J., Murphy, E., & Long, Y. (2014). Commuting efficiency in the Beijing metropolitan area: An exploration combining smartcard and travel survey data. Journal of Transport Geography, 41, 175-183. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.