Open Access
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
Article Number 02004
Number of page(s) 6
Section Waste to Energy and Resources
Published online 05 February 2020
  1. Ute, B. T., Celik, P., and Uzumcu, M. B. Utilization of Cotton Spinning Mill Wastes in Yarn Production. Textile Industry and Environment, Körlü, A. (ed.), IntechOpen, doi: 10.5772/intechopen.85127 (2019). [Google Scholar]
  2. Yilmaz D, Yelkovan S, Tirak Y. Comparison of the effects of different cotton fibre wastes on different yarn types. Fibres & Textiles in Eastern Europe 25, 19-30, doi:10.5604/01.3001.0010. 2340 (2017). [CrossRef] [Google Scholar]
  3. Atindana, J. N. et al. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydrate Polymers 172, 159-174 (2017). [CrossRef] [PubMed] [Google Scholar]
  4. Thoorens, G., Krier, F., Leclercq, B., Carlin, B., and Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment-A review. International Journal of Pharmaceutics 473, 64-72 (2014). [CrossRef] [PubMed] [Google Scholar]
  5. Tuason, D. C., Krawczyk, G. R., and Buliga G. “Microcrystalline Cellulose” in: Food Stabilizers, Thickeners and Gelling Agents, A. Imeson (ed.), Wiley-Blackwell, Chichester, United Kingdom. [Google Scholar]
  6. Kalita, R. D., Natha, Y., Ochubiojo, M. E. & Buragohaina, A. K. Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. 8eauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces 108, 85-89 (2013). [CrossRef] [Google Scholar]
  7. Nicoleta, T., Ibbett, R. & Schuster, K. C. Overview on Native Cellulose and Microcrystalline Cellulose I Structure Studied by X-Ray Diffraction (WAXD): Comparison Between Measurement Techniques. Lenzinger Berichte 89 118-131 (2011). [Google Scholar]
  8. Thoorens, G., Krier, F., Leclercq, B., Carlin, B. & Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. International Journal of Pharmaceutics 473, 64-72, doi: (2014). [CrossRef] [PubMed] [Google Scholar]
  9. Hanani, A. S. Nur, Zuliahani, A., Nawawi, W. I., Razif, N., Rozyanty, A. R. The Effect of Various Acids on Properties of Microcrystalline Cellulose (MCC) Extracted from Rice Husk (RH). IOP Conf. Series: Materials Science and Engineering 204, doi: 10.1088/1757-899X/204/1/012025 (2017). [Google Scholar]
  10. Ohwoavworhua, F. O., Adelakun, T. A. & Okhamafe, O. Processing pharmaceutical grade microcrystalline cellulose from groundnut husk: Extraction methods and characterization. International Journal of Green Pharmacy, 97-104, doi:0.4103/0973-8258.54895 (2009). [CrossRef] [Google Scholar]
  11. Azubuike, C. P., Silva, B. O. & Okhamafe, A. O. Pharmacopeial and physicochemical properties of α-cellulose and microcrystalline cellulose powders derived from cornstalks. International Journal of Green Pharmacy July-September (2012). [Google Scholar]
  12. El-Sakhawy, M and Hassan, M. L. Physical and Mechanical Properties of Microcrystalline Cellulose Prepared from Agricultural Residues. Carbohydrate Polymers, 67, 1-10 (2007). [Google Scholar]
  13. Chauhan, Y. P., Sapkal, R. S., Sapkal, V. S., and Zamre, G. S. Microcrystalline Cellulose from Cotton Rags (Waste from Garment and Hosiery Industries). International Journal of Chemical Sciences, 7(2), 681-688 (2009). [Google Scholar]
  14. Rashid, Mehnaz, Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method. Carbohydrate Polymers, 170, 72-79 (2017). [CrossRef] [PubMed] [Google Scholar]
  15. Chuayjuljit, S., Uthai, S., Tunwattanaseree, C, and Charuchinda, S. Preparation of Microcrystalline Cellulose from Waste-Cotton Fabric for Biodegradability Enhancement of Natural Rubber Sheets. Journal of Reinforced Plastics and Composites, 28(10), 1245-1254 (2009). [CrossRef] [Google Scholar]
  16. Swantomo D., Giyatmi, Adiguno, S. H., Wongsawaeng, D. Preparation of Microcrystalline Cellulose from Waste Cotton Fabrics Using Gamma Irradiation. Engineering Journal 21(2), 173-182 (2017). [CrossRef] [Google Scholar]
  17. Setu, N. I., Mia, M. Y., Lubna, N. J., and Chowdury, A. A. Preparation of Microcrystalline Cellulose from Cotton and its Evaluation as Direct Compressible Excipient in the Formulation of Naproxen Tablets. Dhaka Univ. J. Pharm. Sci. 13(2), 187-192 (2014). [CrossRef] [Google Scholar]
  18. Ioelovich, Michael. Green Chemistry of Micro-and Nanoparticles of Plant Biomass. South Asian Research Journal of Natural Products, 1(1): 1-10, doi: 10.9734/SARJNP/2018/39477 (2018). [Google Scholar]
  19. Nasution, H., et al. Preparation and Characterization of Cellulose Microcrystalline (MCC) from Fiber of Empty Fruit Bunch Palm Oil. IOP Conference Series: Materials Science and Engineering, 180, doi:10.1088/1757-899X/180/1/012007 (2017). [Google Scholar]
  20. Gong, J., Li, J., Xu, J., Xiang, Z., and Mo, L. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Advances, 7, 33486 – 33493 (2017). [Google Scholar]
  21. Chen, W., Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process, Cellulose, 18, 433-442, doi:10.1007/s10570-011-9497-z (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.