Open Access
Issue
E3S Web Conf.
Volume 150, 2020
The Seventh International Congress “Water, Waste and Environment” (EDE7-2019)
Article Number 03005
Number of page(s) 8
Section Geosciences and Environmental Culture
DOI https://doi.org/10.1051/e3sconf/202015003005
Published online 12 February 2020
  1. Radwan, M.A., Salama, A.K., Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 44 (8), 1273–1278 (2006). [Google Scholar]
  2. Khan, S., Rehman, S., Khan, A.Z., Khan, M.A., Shah, M.T., Soil and vegetables nrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol. Environ. Saf. 73, 1820–1827 (2010). [CrossRef] [PubMed] [Google Scholar]
  3. Rahman, M.A., Rahman, M.M., Reichman, S.M., Lim, R.P., Naidu, R., Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicol. Environ. Saf. 100, 53–60 (2014). [CrossRef] [PubMed] [Google Scholar]
  4. Gratão, PL., Monteiro, CC., Tezotto, T., Carvalho, RF., Alves, LR., Peters, LP., Azevedo, RA., Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28(5):803-816 (2015). [CrossRef] [PubMed] [Google Scholar]
  5. Li, X., Shen, Z., Wai, OWH., Li, YS., Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary. Mar Pollut Bull 42(3):215–223 (2001). [Google Scholar]
  6. Manta, D.S., Angelone, M., Bellanca, A., Neri, R., Sprovieri, M., Heavy metal in urban soils: a case study from the city of Palermo (Sicily), Italy. The Science of the Total Environment, 300: 229–243 (2002). [CrossRef] [PubMed] [Google Scholar]
  7. Komarniki, G.J.K., ad and cadmium in indoor air and the urban environment. Environmental Pollution, 136: 47–61 (2005). [CrossRef] [Google Scholar]
  8. Kim N., Fergusson, J., Concentrations and sources of cadmium, copper, lead and zinc in house dust in Christchurch, New Zealand. The Science of the Total Environment, 138: 1–21 (2001). [Google Scholar]
  9. Gupta, S.K., Vollmer, M.K., Krebs, R., The im- portance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. The Science of the Total Environment, 178: 11–20 (1996). [Google Scholar]
  10. Charles Worth, S., Everett, M., Mc Carthy, R., Or-Donez, A., Miguele, E., A comparative study of heavy metal concentration and distribution in de-posited street dusts in a large and small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 29: 563–573 (2003). [Google Scholar]
  11. ImperqtoM., Adamo P., Naim D., Arienwo M., Stan- zione D., Violante P., Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124: 247–256 (2003). [CrossRef] [Google Scholar]
  12. Liu, GN., Wang, J., Zhan, EX., Hou, J., Liu, XH., Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Environmental Science and Pollution Research 23(9):8709-8720. doi: 10.1007/s11356-016-6114-6 (2016). [CrossRef] [Google Scholar]
  13. Alghobar, M.A., Suresha, S., Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. J. Saudi Soc. Agric. Sci. 16, 49–59 (2017). [Google Scholar]
  14. USEPA, Report: recent Developments for In Situ Treatment of Metals contaminated Soils, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response (1996). [Google Scholar]
  15. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N., Toxicity, mechanism and health effects of some heavy metals. InterdiscipToxicol. 7 (2), 60–72 (2014). [Google Scholar]
  16. Kachenko, A.G., Singh, B., Heavy Metals Contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut. 169, 101–123 (2006). [Google Scholar]
  17. Harmanescu, M., Alda, L.M., Bordean, D.M., Gogoasa, L., Gergen, L., Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area, a case study: Banat County, Romania. Chem. Cent. J. 5, 64–73 (2011). [PubMed] [Google Scholar]
  18. Gaetke, L.M., Chow, C.K., Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147–163 (2003). [CrossRef] [PubMed] [Google Scholar]
  19. Isnard, H. La vigne en Algérie. Etude géographique. Ophrys, Gap, France (1951). [Google Scholar]
  20. McGovern, P.E., Ancient Wine: The Search for the Origins of Viticulture. Princeton University Press, Princeton, NJ. (2004). [Google Scholar]
  21. This, P.; Lacombe, T.; Thomas, M. R.; Historical origins and genetic diversity of wine grapes. Trends Genet. 22, 511-519 (2006). [CrossRef] [PubMed] [Google Scholar]
  22. International Organisation of Vine and Wine (OIV), statistiques viticoles mondiales, ISBN 979-10-91799-28-7 OIV (2011). [Google Scholar]
  23. Afechtal, M., Bibi, I., Aarabe, A., Sbaghi, M., Ouantar, M., and Faddoul, Z., first report of grapevine leaf roll-associated virus 2 in Moroccan vineyards. Journal of Plant Pathology, 99 (2), 533-543 (2017). [Google Scholar]
  24. Zaakour, F. and Saber, N., Assessment of Environnemental Quality in Soil under Wheat and Vines In Mohammedia-Benslimane region of Morocco. LAP LAMBERT Academic Publishing (ISBN 978-613-9-86706-6) (2018). [Google Scholar]
  25. Amami, B., Serge, D.M.,Rhazi, L.,Rhazi, M.,Bouahim, S.,: Modern pollen– vegetation relationships within a small Mediterranean temporary pool (western Morocco), Review of Palaeobotany and Palynology (2010). [Google Scholar]
  26. AFNOR. NF X31-107., Soil quality: Determination of the particle size distribution of soil particles: Pipette method. Theme: Physical properties of soils (2003). [Google Scholar]
  27. Walkley, A. and Black, I.A., An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents, SoilSci. 63:251-263 (1934). [Google Scholar]
  28. ISO 11265:1994 Soil quality - Determination of the specific electrical conductivity Specifies an instrumental method for the routine determination of the specific electrical conductivity in an aqueous extract of soil. [Google Scholar]
  29. Mc Lean, E.O., pH and lime requirements. In: Page, A.L. et al. (Eds.), Methods of Soil Analysis, Part 2, second ed., Agronomy, vol. 9 Soil Society of America, Madison, WI, pp. 199–244 (1982). [Google Scholar]
  30. Bernard method described by Chamley., Guide of the techniques of the laboratory of Marine Geology of Luminy, (1966) .198p. [Google Scholar]
  31. Brallier, S., Harrison, R.B., Henry, C.L., Dongsen, X., Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously. Water, Airand soil Pollution, (1996). 86, 195-206. [CrossRef] [Google Scholar]
  32. Baize, D., Total content of metallic trace elements in soils (France). Reference set interpretation strategies. INRA Editions, Paris 410 p (1997). [Google Scholar]
  33. Marschner, H., Mineral nutrition in higher plants. Wd Ltd. The Greystone Press, Antrim, Northern Ireland (1986). [Google Scholar]
  34. Römheld, V., and Marschner, H., Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant and Soil 123, 147–153 (1990). [Google Scholar]
  35. Cakmak, I., Ekiz, H., Yılmaz, A., Torun, B., Köleli, N., Gültekin, I., Alkan, A., and Eker, S. Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils. Plant Soil 188:1-10 (1997). [Google Scholar]
  36. Cakmak, I. Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soil. J. Plant Nutr. 21:2245-2256 (1998). [Google Scholar]
  37. Rengel, Z., and Romheld, V., Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency. Plant Soil, 222:25-34 (2000). [Google Scholar]
  38. Kalayci, M., Torun, B., Eker, S., Aydin, M., Ozturk, L., Cakmak, I., Grain yield, zinc efficiency and zinc concentration of wheat genotypes grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Res 63: 87–98 (1999). [Google Scholar]
  39. Michaud, A.M., Interaction between bioavailability, phytotoxicity of copper, and iron nutrition of grasses- physiological rhizosphere mechanisms. In soil science. pp 191. Montpellier SupAgro, Montpellier (2007). [Google Scholar]
  40. GültenYaylalı-Abanuz, Heavy metal contamination of surface soil around Gebze industrial area, Turkey, Microchemical Journal 99 (2011) 82–92, journal homepage: www.elsevier.com/locate/microc (2011). [Google Scholar]
  41. Alloway b.J. Heavy Metals in Soils. Chapman and Hall, London (1995). [CrossRef] [Google Scholar]
  42. McBride, A. M., Benitez, C., and Sherraden, M. The forms and nature of civic service: A global assessment (Research report). Center for Social Development, Washington University in St Louis (2003). [Google Scholar]
  43. Tremel-Schaub A. and Feix I. Contamination des sols, transfert des sols vers les plantes, édition 2, 413 p (2005). [Google Scholar]
  44. Van Der Perk, M., P.N. Owens, L.K. Deeks, and B.G. Rawlins. Sediment geochemical controls on in-stream phosphorus concentrations during base flow. Water Air Soil Pollut.-Focus 6:443–451 (2006). [CrossRef] [Google Scholar]
  45. Navel, A., Distribution, speciation, impact and transfer of copper in vineyard soil: role of spatial structuring and organic status PhD Thesis, University of Grenoble (2011), 253P. [Google Scholar]
  46. Morlot, M., Analytical aspects of lead in the environment, Ed Lavoisier TEC and DOC (1996). [Google Scholar]
  47. Raskin, I., Ensley, B.D., Phytoremediation of toxic metals; using plants to clean up the environment”. John Wiley and Sons, New York (2000). [Google Scholar]
  48. Kabata-Pendias, Trace Elements in Soil & Plants. CRC Press, Boca Raton, USA (2000). [CrossRef] [Google Scholar]
  49. Godin, sources of contamination and issues. Seminar: “Trace elements and soil pollution”, 4-5 May 1982 Paris, PP 3-12. [Google Scholar]
  50. Lee, C.G., Chon, H.T., Jung, M.C., Heavy metal contamination in the vincinity of the daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry, 16: 1377-1386 (2001). [CrossRef] [Google Scholar]
  51. El Morhit, M., Fekhaoui, M., Elie, P., Girard, P., Yahyaoui, A., ElAbidi, A., Jbilou, M., Heavy metals in sediment, water and the European glass eel, Anguilla Anguilla (Osteichthyes: Anguillidae) from Loukkos river estuary (Morocco eastern Atlantic). Cybium, 33 (3), 219–228 (2009). [Google Scholar]
  52. Chon et al., The myosin ATPase inhibitor 2,3-butanedione-2-monoxime disorganizes microtubules as well as F-actin in Saccharomyces cerevisiae. CellBiolToxicol 17(6):383-93 (2001). [Google Scholar]
  53. Jung, M.C., Environnemental contamination of heavy metals in soils, plans, waters and sediments in the vicinity of metal liferous mine in Korea. Unpubl. PhD thesis, Univ, London, pp: 189-317 (1995). [Google Scholar]
  54. Garcia, R., Millan, E., Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere 37 (8) (1998). [Google Scholar]
  55. Li, X J., The alkili-saline land and agricultural sustainable development of the western Songnen Plain in China. Scientia Geographica Sinica, 20(1): 51–55 (2000). [Google Scholar]
  56. Lamy, J., Ducaroir, T., Sterckeman, F., Douay, T., Reactivity of organic materials. In Baize, D., Tercé, M., (Eds.) “Metallic Elements in Soils - Functional and Spatial Approaches” pp. 269-282, INRA-Éditions, Paris (2002). [Google Scholar]
  57. Perrono, P., The metal micropollutants of sludge from urban sewage treatment plants and agricultural spreading. Mém. D.U.E.S.S., D.E.P., Univ. Picardie, Amiens (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.