Open Access
Issue
E3S Web Conf.
Volume 151, 2020
The 1st International Conference on Veterinary, Animal, and Environmental Sciences (ICVAES 2019)
Article Number 01022
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202015101022
Published online 14 February 2020
  1. Jelsma I, Woittiez LS, Ollivier J, et al. : Do wealthy farmers implement better agricultural practices? An assessment of the implementation of Good Agricultural Practices among different types of independent oil palm smallholders in Riau, Indonesia. Agricultural Systems. 2019; 170: 63–76. [Google Scholar]
  2. Papilo P, Marimin, Hambali E, et al. : Sustainability index assessment of palm oil-based bioenergy in Indonesia. Journal of Cleaner Production. 196: 808–820. [Google Scholar]
  3. DJP: Statistik Perkebunan Indonesia Komoditas Kelapa Sawit 2014-2016. Directorate General of Estate Crops, Jakarta, pp. 69. 2015. [Google Scholar]
  4. Gaveau DL, Pirard R, Salim MA, et al. : Overlapping land claims limit the use of satellites to monitor no‐ deforestation commitments and no‐burning compliance. Conservation Letters. 2017; 10(2): 257–264. [Google Scholar]
  5. Abood SA, Lee JSH, Burivalova Z, et al. : Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia. Conservation Letters .2015; 8(1): 58–67 [Google Scholar]
  6. Sayer J, Ghazoul J, Nelson P, et al. : Oil palm expansion transforms tropical landscapes and livelihoods. Global Food Security. 2012; 1(2): 114–119 [Google Scholar]
  7. Obidzinski K, Andriani R, Komarudin, et al. : Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecology and Society. 2012; 17(1): 25. [CrossRef] [Google Scholar]
  8. Zulfahmi I, Muliari, Akmal Y, et al. : Reproductive performance and gonad histopathology of female Nile Tilapia (Oreochromis niloticus Linnaeus 1758) exposed to palm oil mill effluent. The Egyptian Journal of Aquatic Research. 2018; 44: 327 – 332. [CrossRef] [Google Scholar]
  9. Tan YD, Lim JS: Feasibility of palm oil mill effluent elimination towards sustainable Malaysian palm oil industry. Renewable and Sustainable Energy Reviews. 2019; 111: 507–522. [CrossRef] [Google Scholar]
  10. Verberk WCI, Durance, Vaughan IP, et al. : Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Global change biology. 2016; 22 (5): 1769–1778. [CrossRef] [PubMed] [Google Scholar]
  11. Vithana CL, Sullivan LA, Shepherd T: Role of temperature on the development of hypoxia in blackwater from grass. Science of The Total Environment. 2019; 667: 152–159. [CrossRef] [Google Scholar]
  12. Muliari, Zulfahmi I: Impact of palm oil mill effluent towards phytoplankton community in Krueng Mane River, North Aceh. Jurnal Perikanan dan Kelautan. 2016; 6(2): 137–146. [CrossRef] [Google Scholar]
  13. Muliari, Akmal Y, Zulfahmi I, et al. : Histopathological changes in gill of Nile Tilapia (Oreochromis niloticus) after palm oil mill effluent exposure. IOP Conference Series: Earth and Environmental Science. 2018; 216: 1–5. [CrossRef] [Google Scholar]
  14. Zulfahmi I, Muliari, Akmal Y: Indeks hepatosomatik dan histopatologi hati ikan nila (Oreochromis niloticus linnaeus 1758) yang dipapar limbah cair kelapa sawit [Hepatosomatic Index anf Liver Histopathology of Nile Tilapia (Oreochromis niloticus Linnaeus 1758) Exposed to Palm Oil Mill Effluent]. Prosiding SEMDIUNAYA (Seminar Nasional Multi Disiplin Ilmu UNAYA). 2017; 1: 301–314. [in Indonesian]. [Google Scholar]
  15. Ebrahimi M, Taherianfard M: Concentration of four heavy metals (cadmium, lead, mercury, and arsenic) in organs of two cyprinid fish (Cyprinus carpio and Capoeta sp.) from the Kor River (Iran). Environmental monitoring and assessment. 2010; 168(1-4), 575–585. [CrossRef] [PubMed] [Google Scholar]
  16. McMaster ME, Van Der Kraak GJ, Munkittrick KR: An epidemiological evaluation of the biochemical basis for steroid hormonal depressions in fish exposed to industrial wastes. Journal of Great Lakes Research. 1996; 22(2): 153–171. [Google Scholar]
  17. Zulfahmi I, Ridwan A, Djamar TFL: Kondisi biometrik ikan nila, Oreochromis niloticus (Linnaeus 1758) yang terpapar merkuri [Biometric condition of nile Tilapia, Oreochromis niloticus (Linnaeus 1758) after mercury exposure]. Jurnal Iktiologi Indonesia. 2014; 14(1): 37–48. [in Indonesian]. [Google Scholar]
  18. Zulfahmi I, Muliari, Mawaddah I: Toksisitas limbah cair kelapa sawit terhadap ikan nila (Oreochromis niloticus Linneus 1758) dan ikan bandeng (Chanos chanos Froskall 1755) [Toxicity of Palm Oil Mill Effluent on Nile Tilapia (Oreochromis niloticus Linneus 1758) and Milk Fish (Chanos chanos Froskall 1755)]. Agricola. 2017b; 7: 44–55. [in Indonesian]. [Google Scholar]
  19. Gholib G, Wahyuni S, Akmal M, et al. : The validation of a commercial enzyme-linked immunosorbent assay and the effect of freeze-thaw cycles of serum on the stability of cortisol and testosterone concentrations in Aceh cattle [version 1; peer review: 1 approved, 1 approved with reservations]. F1000Research 2019, 8:12–20. [CrossRef] [PubMed] [Google Scholar]
  20. Webb MAH, Feist GW, Fitzpatrick MS, et al. : Mercury concentrations in gonad, liver, and muscle of white sturgeon Acipenser transmontanus in the lower Columbia River. Archives of Environmental Contamination and Toxicology. 2006; 50(3): 443–451. [CrossRef] [PubMed] [Google Scholar]
  21. Sellin MK, Kolok AS: Cadmium exposures during early development: Do they lead to reproductive impairment in fathead minnows?. Environmental Toxicology and Chemistry: An International Journal. 2006; 25(11): 2957–2963. [CrossRef] [Google Scholar]
  22. Young BJ, López GC, Cristos DS, et al. : Intersex and liver alterations induced by long‐term sublethal exposure to 17 α‐ethinylestradiol in adult male Cnesterodon decemmaculatus (Pisces: Poeciliidae). Environmental toxicology and chemistry. 36 (7): 1738–1745. [CrossRef] [PubMed] [Google Scholar]
  23. Agarwal NK, Raghuvanshi SK: Spermatocrit and sperm density in snowtrout (Schizothorax richardsonii): Correlation and variation during the breeding season. Aquaculture. 2009; 291(1-2): 61–64. [Google Scholar]
  24. Goodbred SL, Gilliom RJ, Gross TS, et al. : Reconnaissance of 17ß-estradiol, 11-ketotestosterone, vitellogenin, and gonad histopathology in common carp of United States streams: Potential for contaminant-induced endocrine disruption. US Geological Survey Open-File Report. 96 (627): 47. [Google Scholar]
  25. Kime DE: Classical’and ‘non-classical’reproductive steroids in fish. Reviews in Fish Biology and Fisheries. 3 (2): 160–180. [Google Scholar]
  26. Muliari M, Zulfahmi I, Akmal Y, Karja NWK, Nisa C, Sumon KA: Effects of palm oil mill effluent on reproductive hormone of female nile tilapia, Oreochromis niloticus (Linnaeus 1758). Adv. Anim. Vet. Sci. 2019; 7(11): 1035–1041. [CrossRef] [Google Scholar]
  27. Murphy CA, Rose KA, Thomas P: Modeling vitellogenesis in female fish exposed to environmental stressors: predicting the effects of endocrine disturbance due to exposure to a PCB mixture and cadmium. Reproductive toxicology. 2005; 19(3): 395–409. [CrossRef] [Google Scholar]
  28. Schulz RW, Miura T: Spermatogenesis and its endocrine regulation. Fish Physiol Biochem. 2002; 26: 43–56. [Google Scholar]
  29. Foran CM, Peterson BN, Benson H: Influence of parental and developmental cadmium exposure on endocrine and reproductive function in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C. 2002; 133: 345–354. [Google Scholar]
  30. De Almeida MD, Pereira TSB, Batlouni SR, et al. : Estrogenic and anti-androgenic effects of the herbicide tebuthiuron in male Nile tilapia (Oreochromis niloticus). Aquatic Toxicology. 2018; 194: 86–93. [CrossRef] [Google Scholar]
  31. Niemuth NJ, Jordan R, Crago J, et al. : Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environmental toxicology and chemistry. 34 (2): 291–296. [CrossRef] [PubMed] [Google Scholar]
  32. Miura C, Miura T: Analysis of spermatogenesis using an eel model. Aqua BioSci. Monogr. 2011; 4: 105–129. [CrossRef] [Google Scholar]
  33. Van Der Kraak GJ, Munkittrick KR, McMaster ME, et al.: Exposure to bleached kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites. Toxicology and Applied Pharmacology. 115 (2): 224–233. [CrossRef] [PubMed] [Google Scholar]
  34. Ohno S, Nakajima Y, Nakajin S: Triphenyltin and Tributyltin inhibit pig testicular 17β-hydroxysteroid dehydrogenase activity and suppress testicular testosterone biosynthesis. Steroids. 70 (9): 645–651. [CrossRef] [PubMed] [Google Scholar]
  35. Murack PJ, Parrish J, Barry TP: Effects of progesterone on sperm motility in fathead minnow (Pimephales promelas). Aquatic toxicology. 2011; 104(1-2): 121–125. [CrossRef] [Google Scholar]
  36. Zeilinger J, Steger‐Hartmann T, Maser E, et al. : Effects of synthetic gestagens on fish reproduction. Environmental Toxicology and Chemistry. 28 (12): 2663–2670. [CrossRef] [PubMed] [Google Scholar]
  37. Kime DE: The effects of pollution on reproduction in fish. Reviews in Fish Biology and Fisheries. 5 (1): 52–96. [Google Scholar]
  38. Han J, Wang Q, Wang X, Li Y, Wen S, Liu S, Zhou B. The synthetic progestin megestrol acetate adversely affects zebrafish reproduction. Aquatic toxicology. 2014; 150, 66–72. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.