Open Access
Issue
E3S Web Conf.
Volume 151, 2020
The 1st International Conference on Veterinary, Animal, and Environmental Sciences (ICVAES 2019)
Article Number 01047
Number of page(s) 3
DOI https://doi.org/10.1051/e3sconf/202015101047
Published online 14 February 2020
  1. Di Nitto D, Dahdouh-Guebas F, Kairo JG, et al.: Digital terrain modeling to investigate the effects of sea-level rise on mangrove propagule establishment. Mar Ecol Prog Ser. 2008; 356: 175–88. [Google Scholar]
  2. Ariyanto D, Bengen DG, Prartono T, et al.: Productivity and CNP availability in Rhizophora apiculata Blume and Avicennia marina (Forssk .) Vierh. at Banggi Coast, Central Java Indonesia. AES Bioflux. 2018; 10(3): 137–46. [Google Scholar]
  3. Ariyanto D, Bengen DG, Prartono T, et al.: The Physicochemical Factors and Litter Dynamics (Rhizophora mucronata Lam . and Rhizophora stylosa Griff ) of Replanted Mangroves, Rembang, Central Java, Indonesia. Environ Nat Resour J. 2019; 17(4): 11–9. [CrossRef] [Google Scholar]
  4. Ariyanto D, Bengen DG, Prartono T, et al.: Short Communication : The relationship between content of particular metabolites of fallen mangrove leaves and the rate at which the leaves decompose over time. Biodiversitas. 2018; 19(3): 700–5. [CrossRef] [Google Scholar]
  5. Behbahani BA, Yazdi FT, Shahidi FN, et al.: Phytochemical analysis and antibacterial activities extracts of mangrove leaf against the growth of some pathogenic bacteria. Microb Pathog. 2018; 114:225–32. https://doi.org/10.1016/j.micpath.2017.12.004 [CrossRef] [PubMed] [Google Scholar]
  6. Thomas N, Lucas R, Bunting P, et al.: Distribution and drivers of global mangrove forest change, 1996 – 2010. PLoS One. 2017; 12(6): 1–14. [Google Scholar]
  7. Ariyanto D, Bengen DG, Prartono T, et al.: The association of Cassidula nucleus (Gmelin 1791) and Cassidula angulifera (petit 1841) with mangrove in banggi coast, Central Java, Indonesia. AACL Bioflux. 2018; 11(2): 348–61. [Google Scholar]
  8. Ariyanto D: Food preference on telescopium telescopium ( mollusca : gastropoda ) based on food sources in mangrove. Plant Arch. 2019; 19(1): 913–6. [Google Scholar]
  9. Thatoi H, Behera BC, Mishra RR: Mycology : An International Journal on Fungal Biology Ecological role and biotechnological potential of mangrove fungi : a review. Mycol An Int J Fungal Biol. 2013; 4(1): 37–41. [Google Scholar]
  10. Vinoth R, Kumaravel S, Ranganathan R: Anatomical and physiological adaptation of mangrove wetlands in east coast of Tamil Nadu. World Sci News. 2019; 129: 161–79. [Google Scholar]
  11. Nebula M, Harisankar H, Candramohanakumar C: Metabolites and bioactivities of Rhizophoraceae mangroves. Nat Products Bioprospect. 2013;3(5):207–32. [CrossRef] [Google Scholar]
  12. Aljaghthmi O, Heba H, Zeid IA : Bioactive Compounds Extracted from Mangrove Plants (Avicennia marina and Rhizophora mucronata): an Overview. Pathophysiology. 2018;1–20. https://doi.org/10.1016/j.pathophys.2018.09.002 [Google Scholar]
  13. Ignat I, Volf I, Popa VI: A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011;126(4):1821–35. http://dx.doi.org/10.1016/j.foodchem.2010.12.026 [Google Scholar]
  14. Hernes PJ, Benner R, Cowie GL, et al.: Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochim Cosmochim Acta. 2001; 65(18): 3109–22. [Google Scholar]
  15. Tegeder M, Rentsch D : Uptake and Partitioning of Amino Acids and Peptides. Mol Plant. 2010;3(6):997–1011. http://dx.doi.org/10.1093/mp/ssq047 [CrossRef] [PubMed] [Google Scholar]
  16. Dinkeloo K, Boyd S, Pilot G: Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants. Semin Cell Dev Biol. 2018;74:105–13. https://doi.org/10.1016/j.semcdb.2017.07.010 [CrossRef] [PubMed] [Google Scholar]
  17. Hildebrandt TM, Nesi AN,Araújo WL, et al.: Amino acid catabolism in plants. Mol Plant 2015;8(11):1563–79. http://dx.doi.org/10.1016/j.molp.2015.09.005 [CrossRef] [PubMed] [Google Scholar]
  18. Mulholland MR, Gobler CJ, Lee C: Peptide hydrolysis, amino acid oxidation, and nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens. Limnol Oceanogr. 2002;47(4):1094–108. [Google Scholar]
  19. Datta PN, Ghose M : Estimation of osmotic potential and free amino acids in some mangroves of the Sundarbans, India. Acta Bot Croat. 2003; 62(1): 37–45. [Google Scholar]
  20. Shankar A, Agrawal N, Sharma M, et al.: Role of Protein Tyrosine Phosphatases in Plants. Curr Genomics. 2015; 16(4): 224–36. [CrossRef] [PubMed] [Google Scholar]
  21. Schenck CA, Maeda HA: Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry. 2018;149:82–102. https://doi.org/10.1016/j.phytochem.2018.02.003 [CrossRef] [PubMed] [Google Scholar]
  22. Forde BG, Lea PJ : Glutamate in plants: Metabolism, regulation, and signalling. J Exp Bot. 2007;58(9):2339–58. [CrossRef] [PubMed] [Google Scholar]
  23. Zieman JC, Macko SA, Mills AL: Role of seagrasses and mangroves in estuarine food webs: temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bull Mar Sci. 1984; 35(3): 380–92. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.