Open Access
Issue
E3S Web Conf.
Volume 157, 2020
Key Trends in Transportation Innovation (KTTI-2019)
Article Number 06038
Number of page(s) 12
Section Energy Efficient Building Design
DOI https://doi.org/10.1051/e3sconf/202015706038
Published online 20 March 2020
  1. I. Kavrakov & G. Morgenthal, J. of Fluids and Struct. 82, 59–85 (2018). https://doi.org/10.1016/j.jfluidstructs.2018.06.013 [CrossRef] [Google Scholar]
  2. G. Prasad, INCAS Bullet. 11(4), 133–138 (2019). https://doi.org/10.13111/2066-8201.2019.11.4.12 [CrossRef] [Google Scholar]
  3. Y. C. Fung, An Introduction to the Theory of Aeroelasticity (Dover Publications, Mineóla, New York, 2008). [Google Scholar]
  4. E. H. Dowell, A Modern Course in Aeroelasticity (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-09453-3 [Google Scholar]
  5. L. Sanpaolesi, P. Croce (Ed.), Handbook 4: Design of Bridges: Guide to the Basis of Bridge Design Related to Eurocodes Supplemented by Practical Examples ([S.n.], Pisa, 2005). [Google Scholar]
  6. B. Alesson, Understanding Bridge Collapse (CRC Press, Boca Raton, FL, 2014). [Google Scholar]
  7. N. B. Bethea, The Science of a Bridge Collapse (Cherry Lake Publ., Ann Arbor, Michigan, 2015). [Google Scholar]
  8. G. F. Myers, A. M. Ghalib, Atkins Techn. J. 7, 83–92 (2012). [Google Scholar]
  9. S. Kaneko, T. Nakamura, F. Inada, M. Kato, K. Ishihara, T. Nishihara, ... M. A. Lanthjem, Flow-induced Vibrations. Classifications and Lessons from Practical Experiences (2nd ed.) (Academic Press, London, Waltham, Mass., 2014). [Google Scholar]
  10. Y. Ge, H. Tanaka, Long-span bridge aerodynamics. In Y. Tamura, A. Kareem (Eds.), Advanced Structural Wind Engineering (pp 85–120) (Springer, Tokyo, 2013). https://doi.org/10.1007/978-4-431-54337-4_4 [CrossRef] [Google Scholar]
  11. G. Diana, D. Rocchi, T. Argentini, S. Muggiasca, J. Wind Eng. Ind. Aerodyn. 98, 363-374 (2010). DOI:10.1016/j.jweia.2010.01.003 [CrossRef] [Google Scholar]
  12. M. S. Mohammadi & R. Mukherjee, Wind Loads on Bridges. Analysis of a Three Span Bridge Based on Theoretical Methods and Eurocode 1 (Royal Institute of Technology, Stockholm, 2013) [Google Scholar]
  13. O. Poddaeva, A. Fedosova and J. Gribach, E3S Web of Conf. 97, Article 03030 (2019). https://doi.org/10.1051/e3sconf/20199703030 [CrossRef] [Google Scholar]
  14. P. Churin & A. Fedosova, IOP Conf. Ser.: Mater. Sci. Eng. 365, Article 052009 (2018). [Google Scholar]
  15. Yu. A. Gosteev, A. D. Obukhovskiy, S. D. Salenko. Magaz. of Civ. Eng. 49(5), 63–72 (2014). https://doi.org/10.5862/MCE.49.7 [CrossRef] [Google Scholar]
  16. S. V. Petinov, In-Service Fatigue Reliability of Structures (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-89318-1 [CrossRef] [Google Scholar]
  17. T. Stathopoulos, C. Baniotopoulos, R. Scanlan, Wind Effects on Buildings and Design of Wind-Sensitive Structures (Springer, Wien; New York, 2007). https://doi.org/10.1007/978-3-211-73076-8 [CrossRef] [Google Scholar]
  18. M. van Dyke, An Album of Fluid Motion (Parabolic Press, Stanford, CA, 2012). [Google Scholar]
  19. Y. S. Matter; T. T. Darabseh; A.-H. I. Mourad, Meccanica: An Intern. J. of Theor. and Appl. Mech. AIMETA, 53(15), 3673–3691 (2018). https://doi.org/10.1007/s11012-0180915-2 [Google Scholar]
  20. D. Proske, Bridge Collapse Frequencies versus Failure Probabilities. Risk Engineering (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-73833-8_6 [CrossRef] [Google Scholar]
  21. A. Hodgkinson, P. Cooper, Bridge dynamics. In G. Parke, N. Hewson (Eds.), ICE Manual of Bridge Engineering (pp. 113–144) (Thomas Telford, London, UK, 2008). https://doi.org/10.1680/mobe.34525.0113 [Google Scholar]
  22. G. T. Michaltsos, I. G. Raftoyiannis, Bridges’ Dynamics (Bentham Science Publishers, Sharjah, U.A.E.; Oak Park, IL, 2012). [CrossRef] [Google Scholar]
  23. B. L. Kutter & D. L. Wilson, Intern. J. of Phys. Model. in Geotech. 6(1), 1–12 (2006). https://doi.org/10.1680/ijpmg.2006.060101 [Google Scholar]
  24. P. A. Sanders, D. K. MacKenzie, C. J. Walker, Proceed. of the ICE – Bridge Eng. 163(2), 49–58 (2010). https://doi.org/10.1680/bren.2010.163.2.49 [Google Scholar]
  25. Jones V, Howells J (2008) Suspension bridges. In G. Parke, N. Hewson (Eds.), ICE Manual of Bridge Engineering (pp. 383–419) (Thomas Telford, London, UK, 2008). https://doi.org/10.1680/mobe.34525.0383 [Google Scholar]
  26. W. Shyy, Y. Lian, J. Tang, Aerodynamics of Low Reynolds Number Flyers (Cambridge University Press, Cambridge, 2006). [Google Scholar]
  27. F. Auteri, A Quasi-optimal spectral method for turbulent flows in non-periodic geometries. In A. Talamelli, M. Oberlack, J. Peinke (Eds.), Progress in Turbulence V: Proceedings of the iTi Conference in Turbulence 2012 (pp. 227–231) (Springer, Cham, 2014). https://doi.org/10.1007/978-3-319-01860-7_37 [Google Scholar]
  28. E. Smirnova & S. Savin, IOP Conf. Ser.: Mat. Sci. and Eng. 652(1), Article 12010 (2019). https://doi.org/10.1088/1757-899X/652/1/012010 [Google Scholar]
  29. E. Smirnova, S. Savin & D. Larin, MATEC Web Conf. 285, Article 00017 (2019). https://doi.org/10.1051/matecconf/201928500017 [CrossRef] [Google Scholar]
  30. S. Savin & E. Smirnova, World Appl. Sci. J. 23(11), 1448–1454 (2013). https://doi.org/10.5829/idosi.wasj.2013.23.11.13161 [Google Scholar]
  31. R. S. Hobbs, Catastrophe to Triumph: Вridges of the Tacoma Narrows (Washington State University Press, Pullman, US, 2006). [Google Scholar]
  32. G. Arioli & F. Gazzola, Communic. in Nonlin. Sci. and Numer. Simul. 42, 342–357 (2017). https://doi.org/10.1016/j.cnsns.2016.05.028 [CrossRef] [Google Scholar]
  33. S. A. Isaev, A.S. Guzeev, S. Z. Sapozhnikov, V. Y. Mityakov, A. V. Mityakov, Magaz. of Civ. Eng. 88(2), 438–454 (2015). https://doi.org/10.1007/s10891-015-1210-x [Google Scholar]
  34. R. Schiestel, Modeling and Simulation of Turbulent Flows (Wiley-ISTE, Hoboken, NJ, US, 2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.