Open Access
Issue
E3S Web Conf.
Volume 159, 2020
The 1st International Conference on Business Technology for a Sustainable Environmental System (BTSES-2020)
Article Number 05015
Number of page(s) 9
Section Chapter 5: Sustainable Cities and Communities
DOI https://doi.org/10.1051/e3sconf/202015905015
Published online 24 March 2020
  1. N. Albacete, P. Fessler, Stress testing Austrian households. Financial Stability Report, 19. P.72-91. (2010) [Google Scholar]
  2. T. Bilston, D. Rodgers, A model for stress testing Household Lending in Australia. (RBA Bulletin, Reserve Bank of Australia. p. 27-38, (December, 2013). [Google Scholar]
  3. K. Galuschak, Stress testing the Private Household Sector using microdata. (2017) [Google Scholar]
  4. D. Handm, Modelling consumer credit risk IMA Journal of Management Mathematics, 12. P. 139–155. (2001) [Google Scholar]
  5. L. Allen, G. DeLong, A. Saunders, Issues in the credit risk modeling of retail markets. Journal of Banking & Finance, 28 – 4. P. 727-752. (2004) [Google Scholar]
  6. E. Bartolozzi, L. Garcıa-Erguın, C. Deocon, O. Vasquez, F. Plaza, Credit Scoring Modelling for Retail Banking Sector. II Modelling Week, Universidad Complutense de Madrid, 16th 24th June. (2008) [Google Scholar]
  7. V. Martin, K. Evien, Credit Scoring Methods. Journal of Economic Literature Accessed April 5, (2011) Retrieved from http://www.palgravejournals.com/jors/journal/v62/n4/full/jors201015a.html#top [Google Scholar]
  8. M. Pohar, M. Blas, S. Turk, Comparison of Logistic Regression and Linear Discriminant Analysis: A Simulation Study Metodološki zvezki, 1. P. 143–161. (2004) [Google Scholar]
  9. G. Webster, Bayesian Logistic Regression Models for Credit Scoring. (A thesis submitted to Rhodes University in partial fulfilment of the requirements for the degree of Master of Commerce. 2011) [Google Scholar]
  10. M. Berry, G. Linoff, Mastering Data Mining: The Art and Science of Customer Relationship Management. Industrial Management & Data Systems, 100 – 5. P. 245-246. (2000) ISSN: 0263-5577. https://doi.org/10.1108/imds.2000.100.5.245.2 [CrossRef] [Google Scholar]
  11. N. Siddiqi, Credit Risk Scorecards. (Published by John Wiley & Sons, Inc. Hoboken, New Jersey. 2006) [Google Scholar]
  12. A.U. Nesterov, Structure and mechanisms for maintaining household financial stability. Vestnik Universiteta, (2013) [Google Scholar]
  13. N. Albacete, P. Lindner, Foreign currency borrowers in Austria – evidence from the Household Finance and Consumption Survey. (Financial Stability Report 29. P. 93109. 2015) [Google Scholar]
  14. S. Dey, R. Djoudad, Y. Terajima, A tool for assessing financial vulnerabilities in the household sector. (Bank of Canada review, 2008) [Google Scholar]
  15. M. Karasulu, Stresstesting Household Debt in Korea. (IMF Working paper. P. 255. 2008) [Google Scholar]
  16. R. Djoudad, A Framework to Assess Vulnerabilities Arising from Household Indebtedness using Microdata. Aestimatio: The IEB International Journal of Finance, 3. p. 150-169. ISSN 2173-0164 (2011) [Google Scholar]
  17. International Monetary Fund Annual Report 2012: Working Together To Support Global Recovery. Pages 76. (2012) [Google Scholar]
  18. ECB. The Eurosystem Household Finance and Consumption Survey: Methodological Report for the first wave. (ECB Statistics Paper Series, 1. April. 2013) [Google Scholar]
  19. V. Michelangeli, M. Pietrunti, A Microsimulation Model to Evaluate Italian Households’ Financial Vulnerability. Bank of Italy Occasional Paper, 225. 34 Pages. (2015) [Google Scholar]
  20. M. R. Arranz, M. Zavadjil, Are emerging Asia’s reserves really too high? Chapter 4. Pages 30. (Book. Macroeconomic Policies in Indonesia. Indonesia economy since the Asian financial crisis of 1997) [Google Scholar]
  21. V. Hlavac, M. Sonka, R. Boyle, Image Processing, Analysis, and Machine Vision. (Fourth Edition. Cengage Learning. Pages 853. 2014) [Google Scholar]
  22. T. Bilston, R. Johnson, M. Read, Research Discussion Paper Stress Testing the Australian Household Sector Using the HILDA Survey. (RDp 2015-01. Pages 35. 2015) [Google Scholar]
  23. J. Meriküll, T. Rõõm, The financial fragility of Estonian households: Evidence from stress tests on the HFCS microdata, Bank of Estonia Working Paper, 4. (2017) [Google Scholar]
  24. Basel Committee on Banking Supervision Annual Economic Report – 2019. https://www.bis.org/annualeconomicreports/index.htm?m=5%7C24 [Google Scholar]
  25. M. Keese, Triggers and Determinants of Severe Household Indebtedness in Germany. Ruhr Economic Paper, 150. Pages 30. (2009) [Google Scholar]
  26. G. D’Alessio, S. Iezzi, Household Over-Indebtedness: definition and measurement with Italian data. Questioni di Economia e Finanza (Occasional papers) from Bank of Italy, 149. P. 3.(2013) [Google Scholar]
  27. Indicators of financial stability // National Bank of the Republic of Kazakhstan. February, 2018. http://www.nationalbank.kz/cont/%D0%98%D0%A4%D0%A32.xls [Google Scholar]
  28. B. De Clercq, Analysing the predictors of financial vulnerability of the consumer market microstructure in South Africa. (Doctoral dissertation. June, 2013) [Google Scholar]
  29. L. Bimendiyeva, G. Sadykhanova, A. Bekmetova, Financial stability of the enterprise as an opportunity to ensure competitiveness. Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020, P. 4978-4983. (2019) [Google Scholar]
  30. S. Kondybayeva, S. Abilday, B. Mukhamediyev, B. Baitanayeva, A. Abylay, Theoretical aspects of the shadow economy and it’s current state in the world economy. Proceedings of the 31st International Business Information Management Association Conference, IBIMA 2018: Innovation Management and Education Excellence through Vision 2020. (2018) [Google Scholar]
  31. K. Czerewacz-Filipowicz, The Russian Federation RTAs in the Light of Global Value Chains. Procedia Engineering, 182, P. 120-126. (2017) [Google Scholar]
  32. S.K. Kondybayeva, Z.S. Ishuova, The effect of monetary policy on real house price growth in the republic of Kazakhstan: A vector autoregression analysis. World Applied Sciences Journal, 22 10, P. 1384-1394. (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.