Open Access
E3S Web Conf.
Volume 161, 2020
International Conference on Efficient Production and Processing (ICEPP-2020)
Article Number 01099
Number of page(s) 4
Published online 15 April 2020
  1. M.V. Ustinova, N.I. Zubrev, M.I. Panfilova, et al., Obtaining composite mortar with the addition of ash from the combustion of spent sleepers, Ecology and industry of Russia, 22, 5, 36-40 (2018). [CrossRef] [Google Scholar]
  2. S.Y. Efremova, N.I. Zubrev, M.I. Panfilova, T.V. Matveyeva, Composite systems using ash from burning production waste, IOP Conference Series: Earth and Environmental Science, 337, 1, 012034 (18 November 2019). [Google Scholar]
  3. M.I. Panfilova, N.I. Zubrev, M.V. Fomina, Modified composite systems, Internet-vestnik VolgGASU, 2, 33, 9 (2014). [Google Scholar]
  4. S.Ya. Brichka, Natural aluminosilicate nanotubes: structure and properties, Nanostrukturnoye materialovedeniye, 2, 40-53 (2009). [Google Scholar]
  5. L.Yu. Kotel, A.V. Brichka, A.L. Petranovskaya, S.Ya. Brichka, X-ray analysis of galloisite nanotubes modified with cerium (IV) oxide, II All-Ukrainian conference for young scientists “Modern materials science: materials and technologies”, Kiev, 125 (2001). [Google Scholar]
  6. M.I. Panfilova, Physico-chemical properties of foamed clay cement systems (Abstract of PhD Tech. Thesis. Tver, 32, 2004). [Google Scholar]
  7. M.I. Panfilova, M.V. Fomina, Issues on increasing the strength characteristics using injection mortars, International scientific and technical conference “Innovative technologies in the construction and training of industrial engineering personnel”, Proceedings of the II regional scientific and practical seminar, Smolensk, 314 (2011). [Google Scholar]
  8. A.F. Buryanov, Efficient gypsum materials and products using ultrafine aluminosilicate additives and carbon nanomodifiers (Abstract of D.Sc. in engineering Thesis, Moscow, 38, 2012). [Google Scholar]
  9. M.I. Panfilova, N.I. Zubrev, V.P. Gorbachevskii, S.Y. Efremova, The renewal of the bearing capacity of rubble masonry by the composite mortar, IOP Conf. Series: Journal of Physics: Conf. Series, 1425, 012068 (2020). [Google Scholar]
  10. M.I. Panfilova, N.I. Zubrev, S.Y. Efremova, M.I. Yahkind, V.P. Gorbachevskii, Strengthening of water-saturated soils of the bases of underground structures with composite mortar modified by industrial waste, boehmite Journal: Case Studies in Construction Materials, 12, e00323 (2020). [CrossRef] [Google Scholar]
  11. V.P. Chalyi, Metal hydroxides. Regularities of formation, composition, structure and properties: monograph (Kiev: Naukova Dumka, 160, 1972). [Google Scholar]
  12. D. Shelley, D. Smale, A.J. Tulloch, Boehmite in syenite from NewZealand, Mineralogical Magazine, 41, 398-400 (1977). [Google Scholar]
  13. A.B. Bukhalo, Non-autoclave heat-insulating foam-gas concrete with nanodispersed modifiers (Abstract of PhD Tech. Thesis, Belgorod, 27, 2010). [Google Scholar]
  14. V.V. Nazarov, O.B. Pavlova-Verevkina, Synthesis and colloid-chemical properties of boehmite hydrosols, Colloid Journal, 60, 6, 797-807 (1998). [Google Scholar]
  15. M.S. Akselrod, Optically stimulated luminescence of Al2O3, Radiat. Meas., 29, 391-399 (1996). [Google Scholar]
  16. S. Sakka, Handbook of sol-gel science and technology processing characterization and applications (Clawer academic publishers Boston, 680, 2005). [Google Scholar]
  17. R.W. Jones, Sol preparation of ceramic and glasses, Metal and Materials, 4, 12, 748-751 (1988). [Google Scholar]
  18. Y. Lvov, W. Wang, L. Zhang, R. Fakhrullin, Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds, Adv. Mater, 28, 6, 1227-1250 (2016). [CrossRef] [PubMed] [Google Scholar]
  19. X. Zhang, Q. Li, T.G Holesinger, Ultrastrong, stiff, and lightweight carbon-nanotube fibers, Advanced Materials, 19, 23, 4198-4201 (2007). [CrossRef] [Google Scholar]
  20. J.E. Riggs, Z.X. Guo, D.L. Carroll, Y.P. Sun, Strong luminescence of solubilized carbon nanotubes, Journal of American Chemical Society, 122, 24, 5879-5880 (2000). [CrossRef] [Google Scholar]
  21. K.P.D. Jong, J.W. Geus, Carbon nanofibers: catalytic synthesis and applications, Catalysis Review: Science Engineering, 42, 4, 481-510 (2000). [CrossRef] [Google Scholar]
  22. M. Panfilova, N. Zubrev, O. Novoselova, S. Efremova, Composite grouting mortar based on 3D-NKM – Nanocrystalline inoculant, MATEC Web of Conferences, 196 (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  23. M.I. Panfilova, N.I. Zubrev, O.V. Novoselova, C.Y. Efremova, Comparative analysis of strength characteristics of grouting mortars, XXI International scientific conference on advanced in civil engineering construction, 365 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.