Open Access
Issue
E3S Web Conf.
Volume 165, 2020
2020 2nd International Conference on Civil Architecture and Energy Science (CAES 2020)
Article Number 01016
Number of page(s) 4
Section Energy Engineering and Energy Technology
DOI https://doi.org/10.1051/e3sconf/202016501016
Published online 01 May 2020
  1. Copons R, Vilaplana J. Rockfall susceptibility zoning at a large scale From geomorphological inventory to preliminary land use planning [J]. Engineering Geology.2008, 102:142-151. [Google Scholar]
  2. Luuk.K.A, Dorren. Mechanisms, effects and management implications of rock fall in forests [J]. Forest Ecology and Management, 2005(215):183-19. [Google Scholar]
  3. S.K. Datta, etc. Dynamic response of pipelines to moving loads [A]. Proe.8th WCEE, 1984. [Google Scholar]
  4. Ying-Xiang WU, Non-linear wave-induced transient response of soil around a trenched pipeline [J].Ocean Engineering, 2006(33): 311-330. [Google Scholar]
  5. P. Ruta, A.S. Zydlo. Drop-weight test based identification of elastic half-space model Parameters [J]. Journal of Sound and Vibration, 2005(282): 411-427. [Google Scholar]
  6. Labiouse V, Descoeudres F, Montani S. Experimental study of rock sheds impacted by rock blocks [J]. Struct Eng Int, 1996, 3(1):171–175. [Google Scholar]
  7. B. Piehler, Ch. Hellmieh, H.A. Mang. Impact of rocks onto gravel Design and evaluation of experiments [J]. International Journal of impact Engineering, 2005(31):559-578. [Google Scholar]
  8. White. H.L. Largest Metal Culvert Designed by Ring Compression Theory [J]. Civil Eng, 1961, 52-55. [Google Scholar]
  9. Newmark. N.M., Hall. W.J. Pipeline design to resist large fault displacement [A], Earthquake Engineering Resinst, 1975: 416-425. [Google Scholar]
  10. K.T. Chaua, R.H.C. Wonga, J.J. Wu. Coefficient of restitution and rotational motions of rockfall impacts [J]. International Journal of Rock Meehanies & Mining Sciences, 2002.39(69):69-77. [Google Scholar]
  11. Labiouse V, Heidenreieh B. Half-scale experimental study of rockfall impacts on sandy slopes [J]. Natural Hazards and Earth System Scienees. 2009(9): 1981-1993. [Google Scholar]
  12. Parmelee. R.A., Ludtke. C.A. Seismic soil-structure inter action of buried pipelines [A].Welding of pipelines and related facilities[S]. Washington DC, USA, 2005. [Google Scholar]
  13. G.E. Muleski, T. Ariman, C.P. Aumen. A shell model of a buried pipe in seimic enviriment [J].Pressure Vessel Technology, 1979(101):44-55. [CrossRef] [Google Scholar]
  14. A. Hindy, M. Novak. Earthquake response of underground pipelines [J]. Earthquake Engineering and Structural Dynamics, 1979(17):451-476. [CrossRef] [Google Scholar]
  15. Dorren L. A review of rockfall mechanics and modelling approaches [J]. Progress in Physical Geography. 2003, 27(1): 69-87. [Google Scholar]
  16. Bozzolo D, Pamini B. Simulation of Rock Falls down a valley side [J]. ACTH Mechanica. 1986, 63: 113-130. [Google Scholar]
  17. Schneuwly D, Stoffel M. Spatial analysis of rockfall activity bounce heights and geomorphic changes over the last 50 years-A case study using dendrogeomorphology [J]. Geomorphology. 2008, 102: 522-531. [Google Scholar]
  18. A. Azzoni. Analysis and Prediction of Rockfalls Using a Mathematical Model [J].Elsevier Science, 1995, 32(7):709-724. [Google Scholar]
  19. ZHONG W, GAO J.F. Hazard assessment of typical geological disasters along oil and gas pipeline [J]. Oil & Gas Storage and Transportation, 2015, 34(9): 934-938. [Google Scholar]
  20. SHI X.W., DENG Q.L., DONG G.L. The hazards of landslides and rockslides to pipeline [J]. Oil & Gas Storage and Transportation, 2013, 32 (3): 295-299. [Google Scholar]
  21. YANG J.R., BAI Y, YANG X.D., et al. Numerical simulation and tests for flexible rock shed subjected to rackfall impact [J]. Journal of Vibration and Shock, 2017, 36(9): 172-178, 246. [Google Scholar]
  22. ZHOU Y.H. Combined Application of Flexible Support Network for Prevention of Rockfall along Side Slope and Unstable Rock [J].Subgrade Engineering, 2017, (5): 157-163. [Google Scholar]
  23. YANG Z.Q., CHEN D.X., GAO Q, et al. Key technologies in long-distance pipeline transportation of filling slurry of coarse aggregate[J]. Journal Of Guangxi University (Natural Science Edition), 2016, 41(4): 1306-1312. [Google Scholar]
  24. LIU Y.Y., ZHOU G.Q., SU Y.H., et al. Experimental study of swell-shrinking characteristics of the mixture of eps granules and expansive soil [J]. Industrial Construction, 2017, 47(5): 90-95. [Google Scholar]
  25. WANG X.M., GU A.Q. Anti-loading measures for vertical earth pressure of buried pipeline [J]. Chinese Jounal Of Geotechnical Engineering, 1990, 12(3): 83-89. [Google Scholar]
  26. Zarnani S, Bathurst R.J. Numerical parametric study of expanded polystyrene (EPS) geofoam seismic buffers [J]. Canadian Geotechnical Journa1, 2009, 46(3): 318-338. [Google Scholar]
  27. BAI B, LU S.Q. Test of Styrofoam and Its Application in Geotechnical Engineering [J]. Chinese Jounal Of Geotechnical Engineering, 1993, 15(2): 104-108. [Google Scholar]
  28. GU A.Q., GUO T.T., WANG X.P. Experimental study on reducing-load measurement using EPS of culvert under high-stacked soil [J]. Chinese Journal Of Geotechnical Engineering, 2005, 27(5): 500-504. [Google Scholar]
  29. Wang Z.L., Li Y.C., Wang J.G. Numerical analysis of attenuation effect of EPS geofoam on stress-waves in civil defense engineering [J]. Geotextiles and Geomembranes, 2006, 24: 265-273. [Google Scholar]
  30. A. Ossa, M.P. Romo. Dynamic characterization of EPS geofoam[J]. Geotextiles and Geomembranes, 2010, 29 (2011): 40-50. [CrossRef] [Google Scholar]
  31. CAO Q.K., XIE R, SHEN H.M. Seismic Response Analysis of High-Rise EPS Lattice Type Concrete Wall [J]. Earthquake Resistant Engineeringand Retrofitting, 2017, 39(5): 18-25, 33. [Google Scholar]
  32. JIA P, XU Y.F. The Review of the Strength and Deformation Characteristics of the EPS Block [J]. Modern Transportation Technology, 2017, (6): 8-11. [Google Scholar]
  33. GU A.Q., LV Z.F., JIANG F.L., et al. Load reduction tests and design methods for culverts with high fill soil using eps slabs [J]. Chinese Journal Of Geotechnical Engineering, 2009, 31(10): 1481-1486. [Google Scholar]
  34. Krieg R.D. A simple constitutive description for soils and crushablefoam SCDR-72-0883[R]. Albuquerque: Sandia National Laboratories, 1972, 122-123. [Google Scholar]
  35. Zhang J, Kikucbi N, Li V, et al. Constitutive modeling of polymericfoam material subjected to dynamic crash loading [J]. lnternational Journal of lmpact Engineering, 1998, 21 (5): 369-386. [Google Scholar]
  36. Livermore Software Technology Corporation (LSTC). LS-DYNA Keyword user'sManual [M]. California: Computer technology press, 2003:98-139. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.