Open Access
Issue
E3S Web Conf.
Volume 165, 2020
2020 2nd International Conference on Civil Architecture and Energy Science (CAES 2020)
Article Number 03019
Number of page(s) 9
Section Geology, Mapping, and Remote Sensing
DOI https://doi.org/10.1051/e3sconf/202016503019
Published online 01 May 2020
  1. A.J. Tatem, A.M. Noor, V.H. Craig, et al. High Resolution Population Maps for Low Income Nations: Combining Land Cover and Census in East Africa[J].PLoS ONE, 2, 12: e1298-(2007). [Google Scholar]
  2. J. Chen, C.Y. Xu, S.L. Guo, H. Chen. Research progress and challenges of statistical downscaling methods[J].Water Resources Research, 5, 4:299-313 (2016). [Google Scholar]
  3. C. Clark. Urban population densities[J].Journal of the Royal Statistical Society. Series A (General), 114, 4:490-496 (1951). [CrossRef] [Google Scholar]
  4. J. Feng, X. Zhou. The population growth and distribution of Beijing metropolitan area in the past 20 years [J].Acta Geographica Sinica, 58, 6:903-916 (2003). [Google Scholar]
  5. H.Y. Tian, H. Xiao. Dynamic Simulation of Urban Population Density Distribution Based on CA: A Case Study of Population Density Changes in Changsha City[J].Geographic Information World, 7, 6:40-46 (2009). [Google Scholar]
  6. Z.W. Wang. Research on the Spatialization Method of Chinese Population Distribution [D]. Lanzhou University (2010). [Google Scholar]
  7. D. Martin. An assessment of surface and zonal models of population[J].International Journal of Geographical Information Systems, 10, 8:973-989 (1996). [Google Scholar]
  8. A.M. Lu, C.M. Li, Z.J. Lin, Y.M. Jin. A Study on the Spatial Distribution of Demographic Data [J].Geomatics and Information Science of Wuhan University, 27, 3:301-305 (2002). [Google Scholar]
  9. H.X. Zhang. Analysis of Henan Province' s population distribution pattern and its influencing factors based on township scale (2000-2010) [D]. Lanzhou University, (2016). [Google Scholar]
  10. C. Linard, G.A.J. Tatem. Assessing the use of global land cover data for guiding large area population distribution modelling[J].GeoJournal, 76, 5:525-538 (2011). [Google Scholar]
  11. A.E. Gaughan, F.R. Stevens, L. Catherine, et al. High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015[J].PLoS ONE, 8, 2:e55882-(2013). [Google Scholar]
  12. M. Tan, K. Liu, L. Liu, et al. Spatialization of a 30 m grid population in the Pearl River Delta based on a random forest model[J].Progress in Geographical Sciences, 36, 10:122-130 (2017). [Google Scholar]
  13. L. Catherine, G. Marius, R.W. Snow, et al. Population Distribution,Settlement Patterns and Accessibility across Africa in 2010[J].PLoS ONE, 7, 2:e31743-(2012). [Google Scholar]
  14. A. Weston, G. Seth, Z. Ben, et al. Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru[J].PLoS ONE, 9, 7:e100037-(2014). [Google Scholar]
  15. F.R. Stevens, A.E. Gaughan, C. Linard, et al. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data[J].PLOS ONE, 10, 2:e0107042-(2015). [Google Scholar]
  16. A.E. Gaughan, F.R. Stevens, Z. Huang, et al. Spatiotemporal patterns of population in mainland China, 1990 to 2010[J].Scientific Data, 3:160005-(2016). [Google Scholar]
  17. P. Sinha, A.E. Gaughan, F.R. Stevens, et al. Assessing the spatial sensitivity of a random forest model: Application in gridded population modeling. Computers, Environment and Urban Systems, 75, 132-145 (2019). [Google Scholar]
  18. S.Q. Deng. Research on population spatial distribution model based on random forest algorithm and multi-source data [D] .East China Normal University, (2018). [Google Scholar]
  19. G. Qiu. Spatialization of high-precision population data based on random forest model [D]. Inner Mongolia Normal University (2019). [Google Scholar]
  20. T. Lian. Building-scale population estimation based on random forest and night light data [D]. East China Normal University (2019). [Google Scholar]
  21. M. Bakillah, S. Liang, A. Mobasheri, et al. Fine-resolution population mapping using OpenStreetMap points-of-interest[J].International Journal of Geographical Information Systems, 28, 9:1940-1963 (2014). [Google Scholar]
  22. Y.F. Hu, G.H. Zhao, Q.L. Zhang. Study on the Spatialization of Population in Sichuan and Chongqing Based on Night Light and LUC Data [J].Journal of Geo-Information Science, 20, 68-78 (2018). [Google Scholar]
  23. K.J. Wang, H.Y. Cai, X.H. Yang. Application of Multivariate Statistical Regression and Geographically Weighted Regression in Multi-scale Population Spatialization Research[J].Progress in Geographical Sciences, 35, 1):1494-1505 (2016). [Google Scholar]
  24. K.J. Wang. Research on multi-scale spatialization model of statistical population data [D]. East China Normal University (2015). [Google Scholar]
  25. T. Vandal, E. Kodra, S. Ganguly, et al. DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution[J].Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining. ACM, p:1663-1672 (2017). [Google Scholar]
  26. Z. Zong, J. Feng, K. Liu, et al. DeepDPM: Dynamic Population Mapping via Deep Neural Network[J].Proceedings of the AAAI Conference on Artificial Intelligence, p:1294-1301 (2019). [CrossRef] [Google Scholar]
  27. N. Dong, X.H. Yang, H.Y. Cai. Research Progress on Spatialization of Population Data [J].Journal of Geo-Information Science, 18, 10:5-14 (2016). [Google Scholar]
  28. J.D. Wu, X. Wang, C.L. Wang, X. He, M.Q. Ye. The Status and Development Trend of the Spatialization of Social and Economic Data[J].Journal of Geo-Information Science, 20, 9:1252-1262 (2018). [Google Scholar]
  29. L. Wang, L. Chen. Spatiotemporal dataset on Chinese population distribution and its driving factors from 1949 to 2013[J].Scientific Data, 3, 3:160047-(2016). [Google Scholar]
  30. C. Dong, C.C. Loy, K. He, et al. Learning a Deep Convolutional Network for Image Super-Resolution[C]// European Conference on Computer Vision. Springer, Cham (2014). [Google Scholar]
  31. C. Dong, C.C. Loy, K. He, et al. Image Super-Resolution Using Deep Convolutional Networks[J].IEEE Trans Pattern Anal Mach Intell, 38, 2:295-307 (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.