Open Access
E3S Web Conf.
Volume 165, 2020
2020 2nd International Conference on Civil Architecture and Energy Science (CAES 2020)
Article Number 03023
Number of page(s) 9
Section Geology, Mapping, and Remote Sensing
Published online 01 May 2020
  1. Wang Y. Response of the ocean, climate and terrestrial carbon cycle to Holocene freshwater discharge after 8 kyr BP. Geophysical Research Letters. 2005;32(15). [Google Scholar]
  2. Ranasinghe PN, Ortiz JD, Smith AJ, Griffith EM, Siriwardana C, De Silva SN, et al. Mid-to late-Holocene Indian winter monsoon variability from a terrestrial record in eastern and southeastern coastal environments of Sri Lanka. The Holocene. 2013;23(7):945-60. [Google Scholar]
  3. Lambeck K. Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth and Planetary Science Letters. 1996;142(1):43-57. [Google Scholar]
  4. Scott DB, Collins ES. Late mid-Holocene sea-level oscillation: A possible cause. Quaternary Science Reviews. 1996;15(8):851-6. [Google Scholar]
  5. Smith DE, Harrison S, Firth CR, Jordan JT. The early Holocene sea level rise. Quaternary Science Reviews. 2011;30(15):1846-60. [Google Scholar]
  6. Xiong H, Zong Y, Qian P, Huang G, Fu S. Holocene sea-level history of the northern coast of South China Sea. Quaternary Science Reviews. 2018;194:12-26. [Google Scholar]
  7. Yang D, Peng Z, Luo C, Liu Y, Zhang Z, Liu W, et al. High-resolution pollen sequence from Lop Nur, Xinjiang, China: Implications on environmental changes during the late Pleistocene to the early Holocene. Review of Palaeobotany and Palynology. 2013;192:32-41. [Google Scholar]
  8. Andres W, Bos JAA, Houben P, Kalis AJ, Nolte S, Rittweger H, et al. Environmental change and fluvial activity during the Younger Dryas in central Germany. Quaternary International. 2001;79(1):89-100. [Google Scholar]
  9. Sima A, Paul A, Schulz M. The Younger Dryas—an intrinsic feature of late Pleistocene climate change at millennial timescales. Earth and Planetary Science Letters. 2004;222(3):741-50. [Google Scholar]
  10. Flohr P, Fleitmann D, Matthews R, Matthews W, Black S. Evidence of resilience to past climate change in Southwest Asia: Early farming communities and the 9.2 and 8.2 ka events. Quaternary Science Reviews. 2016;136:23-39. [Google Scholar]
  11. Dong J, Shen C-C, Kong X, Wu C-C, Hu H-M, Ren H, et al. Rapid retreat of the East Asian summer monsoon in the middle Holocene and a millennial weak monsoon interval at 9ka in northern China. Journal of Asian Earth Sciences. 2018;151:31-9. [Google Scholar]
  12. Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ, Arrowsmith C, et al. The 8.2ka event from Greenland ice cores. Quaternary Science Reviews. 2007;26(1):70-81. [Google Scholar]
  13. Zanchetta G, Bar-Matthews M, Drysdale RN, Lionello P, Ayalon A, Hellstrom JC, et al. Coeval dry events in the central and eastern Mediterranean basin at 5.2 and 5.6ka recorded in Corchia (Italy) and Soreq caves (Israel) speleothems. Global and Planetary Change. 2014;122:130-9. [Google Scholar]
  14. Roland TP, Daley TJ, Caseldine CJ, Charman DJ, Turney CSM, Amesbury MJ, et al. The 5.2 ka climate event: Evidence from stable isotope and multi-proxy palaeoecological peatland records in Ireland. Quaternary Science Reviews. 2015;124:209-23. [Google Scholar]
  15. Yang Y, Zhang H, Chang F, Meng H, Pan A, Zheng Z, et al. Vegetation and climate history inferred from a Qinghai Crater Lake pollen record from Tengchong, southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology. 2016;461:1-11. [Google Scholar]
  16. Cho A, Kashima K, Seto K, Yamada K, Sato T, Katsuki K. Climate change during the Little Ice Age from the Lake Hamana sediment record. Estuarine, Coastal and Shelf Science. 2019. [Google Scholar]
  17. Zhao J, Thomas EK, Yao Y, DeAraujo J, Huang Y Major increase in winter and spring precipitation during the Little Ice Age in the westerly dominated northern Qinghai-Tibetan Plateau. Quaternary Science Reviews. 2018;199:30-40. [Google Scholar]
  18. Magny M, de Beaulieu J-L, Drescher-Schneider R, Vannière B, Walter-Simonnet A-V, Miras Y, et al. Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quaternary Science Reviews. 2007;26(13):1736-58. [Google Scholar]
  19. Lončar N, Bar-Matthews M, Ayalon A, Faivre S, Surić M. Holocene climatic conditions in the eastern Adriatic recorded in stalagmites from Strašna peć Cave (Croatia). Quaternary International. 2019;508:98-106. [Google Scholar]
  20. Rhodes RH, Faïn X, Stowasser C, Blunier T, Chappellaz J, McConnell JR, et al. Continuous methane measurements from a late Holocene Greenland ice core: Atmospheric and in-situ signals. Earth and Planetary Science Letters. 2013;368:9-19. [Google Scholar]
  21. Agatova AR, Nepop RK, Barinov VV, Nazarov AN, Myglan VS. The first dating of strong Holocene earthquakes in Gorny Altai using long-term tree-ring chronologies. Russian Geology and Geophysics. 2014;55(9):1065-73. [Google Scholar]
  22. Sirocko F, Dietrich S, Veres D, Grootes PM, Schaber-Mohr K, Seelos K, et al. Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany. Quaternary Science Reviews. 2013;62:56-76. [Google Scholar]
  23. Lu R, Jia F, Gao S, Shang Y, Li J, Zhao C. Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai–Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology. 2015;430:1-10. [Google Scholar]
  24. Xiao J, Zhang S, Fan J, Wen R, Xu Q, Inouchi Y, et al. The 4.2 ka event and its resulting cultural interruption in the Daihai Lake basin at the East Asian summer monsoon margin. Quaternary International. 2018. [Google Scholar]
  25. Karin A. Koinig WS, André F. Lotter, Christian Ohlendorf Michael Sturm. <9000 years of geochemical evolution of lithogenic majorand trace elements .pdf>. Journal of Paleolimnology. 2003;30:307-20. [Google Scholar]
  26. Roy PD, Smykatz-Kloss W, Sinha R. Late Holocene geochemical history inferred from Sambhar and Didwana playa sediments, Thar Desert, India: Comparison and synthesis. Quaternary International. 2006;144(1):84-98. [Google Scholar]
  27. Qiao S, Yang Z, Liu J, Sun X, Xiang R, Shi X, et al. Records of late-Holocene East Asian winter monsoon in the East China Sea: Key grain-size component of quartz versus bulk sediments. Quaternary International. 2011;230(1):106-14. [Google Scholar]
  28. Bayer Altin T, El Ouahabi M, Fagel N. Environmental and climatic changes during the Pleistocene–Holocene in the Bor Plain, Central Anatolia, Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology. 2015;440:564-78. [Google Scholar]
  29. Wagner B, Kolvenbach A, Schäbitz F, Viehberg, Junginger A, Wennrich V, et al. Late Glacial and Holocene environmental history of the Ethiopian Highlands inferred from a 12 m long sediment record from Dendi crater lakes. Quaternary International. 2016;404:177 [Google Scholar]
  30. Zheng Y, Pancost RD, Naafs BDA, Li Q, Liu Z, Yang H. Transition from a warm and dry to a cold and wet climatein NE China across the Holocene. Earth and Planetary Science Letters. 2018;493:36-46. [Google Scholar]
  31. Ma L, Gao C, Kattel GR, Yu X, Wang G. Evidence of Holocene water level changes inferred from diatoms and the evolution of the Honghe Peatland on the Sanjiang Plain of Northeast China. Quaternary International. 2018;476:82-94. [Google Scholar]
  32. Xiao H, Cheng S, Mao X, Huang T, Hu Z, Zhou Y, et al. Characteristics of peat humification, magnetic susceptibility and trace elements of Hani peatland, northeastern China: paleoclimatic implications. Atmospheric Science Letters. 2017;18(3):140-50. [Google Scholar]
  33. Li N, Chambers FM, Yang J, Jie D, Liu L, Liu H, et al. Records of East Asian monsoon activities in Northeastern China since 15.6 ka, based on grain size analysis of peaty sediments in the Changbai Mountains. Quaternary International. 2017;447:158-69. [Google Scholar]
  34. Zhang Z, Wang G, Liu X, Jia H. Holocene controls on wetland carbon accumulation in the Sanjiang Plain, China. Journal of Paleolimnology. 2016;56(4):267-74. [Google Scholar]
  35. Xing W, Guo W, Liang H, Li X, Wang C, He J, et al. Holocene peatland initiation and carbon storage in temperate peatlands of the Sanjiang Plain, Northeast China. The Holocene. 2015;26(1):70-9. [Google Scholar]
  36. Huang T, Cheng S, Mao X, Hong B, Hu Z, Zhou Y. Humification degree of peat and its implications for Holocene climate change in Hani peatland, Northeast China. Chinese Journal of Geochemistry. 2013;32(4):406-12. [Google Scholar]
  37. Zhang C, Shen Y, Li Q, Jia W, Li J, Wang X. Sediment grain-size characteristics and relevant correlations to the aeolian environment in China's eastern desert region. Sci Total Environ. 2018;627:586-99. [Google Scholar]
  38. Sun W, Zhang E, Liu E, Chang J, Shen J. Linkage between Lake Xingkai sediment geochemistry and Asian summer monsoon since the last interglacial period. Palaeogeography, Palaeoclimatology, Palaeoecology. 2018;512:71-9. [Google Scholar]
  39. Macumber AL, Patterson RT, Galloway JM, Falck H, Swindles GT. Reconstruction of Holocene hydroclimatic variability in subarctic treeline lakes using lake sediment grain-size end-members. The Holocene. 2018;28(6):845-57. [Google Scholar]
  40. Zhang X, Zhou A, Wang X, Song M, Zhao Y, Xie H, et al. Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering. Quaternary Research. 2017;89(1):365-73. [Google Scholar]
  41. Kennish MJ. Encyclopedia of Estuaries 2016. [CrossRef] [Google Scholar]
  42. Paterson GA, Heslop D. New methods for unmixing sediment grain size data. Geochemistry, Geophysics, Geosystems. 2015;16(12):4494-506. [CrossRef] [Google Scholar]
  43. Tu G-x, Huang R-q, Deng H, Li Y-r. Permeability and sedimentation characteristics of pleistocene fluvio-glacial deposits in the Dadu river valley, Southwest China. Journal of Mountain Science. 2013;10(3):482-93. [Google Scholar]
  44. Ao H. Mineral-magnetic signal of long-term climatic variation in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Journal of Asian Earth Sciences. 2010;39(6):692-700. [Google Scholar]
  45. Xia Huaikuan ZZ. Landforms of the coastal area of the Liaodong deninsula and their representative neotectonics motion. Seismology and Geology,. 1998;61:41-9. [Google Scholar]
  46. Blaauw M, Christen JA. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. 2011;6(3):457-74. [Google Scholar]
  47. laboratory Qglar. The evolution of the natural environment in southern Liaoning province during 10 thousand years. Science China. 1977;6:603-13. [Google Scholar]
  48. laboratory. Qglar. Preliminary results on Holocene geochronology in southern Liaoning Geochimica. 1974;1:25-7. [Google Scholar]
  49. Weltje GJ, Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters. 2008;274(3):423-38. [Google Scholar]
  50. Liu Q, Yang X. Geochemical composition and provenance of aeolian sands in the Ordos Deserts, northern China. Geomorphology. 2018;318:354-74. [Google Scholar]
  51. Clift PD, Wan S, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: A review of competing proxies. Earth-Science Reviews. 2014;130:86-102. [Google Scholar]
  52. Sheldon ND, Tabor NJ. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews. 2009;95(1):1-52. [Google Scholar]
  53. Roy PD, Caballero M, Lozano R, Ortega B, Lozano S, Pi T, et al. Geochemical record of Late Quaternary paleoclimate from lacustrine sediments of paleo-lake San Felipe, western Sonora Desert, Mexico. Journal of South American Earth Sciences. 2010;29(3):586-96. [Google Scholar]
  54. Andersson POD, Worden RH, Hodgson DM, Flint S. Provenance evolution and chemostratigraphy of a Palaeozoic submarine fan-complex: Tanqua Karoo Basin, South Africa. Marine and Petroleum Geology. 2004;21(5):555-77. [Google Scholar]
  55. Stebich M, Rehfeld K, Schlütz F, Tarasov PE, Liu J, Mingram J. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake. Quaternary Science Reviews. 2015;124:275-89. [Google Scholar]
  56. Zhang S, Yang Z, Cioppa MT, Liu Q, Wang X, Eichhorn HS, et al. A high-resolution Holocene record of the East Asian summer monsoon variability in sediments from Mountain Ganhai Lake, North China. Palaeogeography, Palaeoclimatology, Palaeoecology. 2018;508:17-34. [Google Scholar]
  57. Berger A, Loutre MF. Parameters of the Earths orbit for the last 5 Million years in 1 kyr resolution. Supplement to: Berger, A; Loutre, M-F (1991): Insolation values for the climate of the last 10 million of years Quaternary Science Reviews, 10(4), 297-317, https://doiorg/101016/0277-3791(91)90033-Q: PANGAEA; 1999. [Google Scholar]
  58. Dykoski C, Edwards R, Cheng H, Yuan D, Cai Y, Zhang M, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters. 2005;233(1-2):71-86. [Google Scholar]
  59. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature. 2008;451(7182):1090-3. [Google Scholar]
  60. Stančikaitė M, Gedminienė L, Edvardsson J, Stoffel M, Corona C, Gryguc G, et al. Holocene vegetation and hydroclimatic dynamics in SE Lithuania -Implications from a multi-proxy study of the Čepkeliai bog. Quaternary International. 2019;501:21939 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.